Publikation:

Guided Linguistic Annotation of Argumentation through Visual Analytics

Lade...
Vorschaubild

Dateien

Sperrle_2-wq28py4fkyhj4.pdf
Sperrle_2-wq28py4fkyhj4.pdfGröße: 373.21 KBDownloads: 81

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

COMMA Workshop on Argument Visualization (ArgVis). 2020

Zusammenfassung

We present a mixed-initiative approach to interactive annotation of argumentation, a typically time-consuming manual task. Our system facilitates the process by suggesting which fragments of text to annotate next. Suggestions are sourced from pre-annotations and user-preferences that are learned over time. Unused suggestions decay over time, reducing the amount of necessary interactions, while providing additional training data to the system. We show the effectiveness of the system for argument annotation according to Inference Anchoring Theory. The duality of suggestion sources and novel approach to suggestion decay are broadly applicable in linguistic annotation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

visual analytics, argumentation annotation, guidance, interface

Konferenz

ArgVis Workshop at the 8th International Conference on Computational Models of Argument (online), 8. Sept. 2020
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPERRLE, Fabian, Mark-Matthias ZYMLA, Mennatallah EL-ASSADY, Miriam BUTT, Daniel A. KEIM, 2020. Guided Linguistic Annotation of Argumentation through Visual Analytics. ArgVis Workshop at the 8th International Conference on Computational Models of Argument (online), 8. Sept. 2020. In: COMMA Workshop on Argument Visualization (ArgVis). 2020
BibTex
@inproceedings{Sperrle2020Guide-66537,
  year={2020},
  title={Guided Linguistic Annotation of Argumentation through Visual Analytics},
  url={https://argvis-workshop.lingvis.io/pdfs/ArgVis2020_paper_4.pdf},
  booktitle={COMMA Workshop on Argument Visualization (ArgVis)},
  author={Sperrle, Fabian and Zymla, Mark-Matthias and El-Assady, Mennatallah and Butt, Miriam and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66537">
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dc:creator>Butt, Miriam</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66537"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66537/1/Sperrle_2-wq28py4fkyhj4.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract>We present a mixed-initiative approach to interactive annotation of argumentation, a typically time-consuming manual task. Our system facilitates the process by suggesting which fragments of text to annotate next. Suggestions are sourced from pre-annotations and user-preferences that are learned over time. Unused suggestions decay over time, reducing the amount of necessary interactions, while providing additional training data to the system. We show the effectiveness of the system for argument annotation according to Inference Anchoring Theory. The duality of suggestion sources and novel approach to suggestion decay are broadly applicable in linguistic annotation.</dcterms:abstract>
    <dc:creator>Zymla, Mark-Matthias</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Guided Linguistic Annotation of Argumentation through Visual Analytics</dcterms:title>
    <dc:creator>Sperrle, Fabian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66537/1/Sperrle_2-wq28py4fkyhj4.pdf"/>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:contributor>Zymla, Mark-Matthias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-05T06:51:19Z</dc:date>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-05T06:51:19Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2023-03-28

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen