Publikation:

Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Bian, Shen
Chen, Li

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Differential Equations. 2012, 253(1), pp. 356-377. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2012.03.008

Zusammenfassung

We study a singularly perturbed elliptic second order system in one space variable as it appears in a stationary quantum drift–diffusion model of a semiconductor. We prove the existence of solutions and their uniqueness as minimizers of a certain functional and determine rigorously the principal part of an asymptotic expansion of a boundary layer of those solutions. We prove analytical estimates of the remainder terms of this asymptotic expansion, and confirm by means of numerical simulations that these remainder estimates are sharp.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Quantum drift–diffusion model, Boundary layer, Elliptic system, Variational methods

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BIAN, Shen, Li CHEN, Michael DREHER, 2012. Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model. In: Journal of Differential Equations. 2012, 253(1), pp. 356-377. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2012.03.008
BibTex
@article{Bian2012Bound-22045,
  year={2012},
  doi={10.1016/j.jde.2012.03.008},
  title={Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model},
  number={1},
  volume={253},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={356--377},
  author={Bian, Shen and Chen, Li and Dreher, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22045">
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Chen, Li</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-22T14:44:29Z</dcterms:available>
    <dc:contributor>Bian, Shen</dc:contributor>
    <dc:creator>Bian, Shen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We study a singularly perturbed elliptic second order system in one space variable as it appears in a stationary quantum drift–diffusion model of a semiconductor. We prove the existence of solutions and their uniqueness as minimizers of a certain functional and determine rigorously the principal part of an asymptotic expansion of a boundary layer of those solutions. We prove analytical estimates of the remainder terms of this asymptotic expansion, and confirm by means of numerical simulations that these remainder estimates are sharp.</dcterms:abstract>
    <dc:creator>Dreher, Michael</dc:creator>
    <dcterms:bibliographicCitation>Journal of Differential Equations ; 253 (2012), 1. - S. 356-377</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Dreher, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22045"/>
    <dc:creator>Chen, Li</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-22T14:44:29Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen