Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Bian, Shen
Chen, Li
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Journal of Differential Equations. 2012, 253(1), pp. 356-377. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2012.03.008
Zusammenfassung

We study a singularly perturbed elliptic second order system in one space variable as it appears in a stationary quantum drift–diffusion model of a semiconductor. We prove the existence of solutions and their uniqueness as minimizers of a certain functional and determine rigorously the principal part of an asymptotic expansion of a boundary layer of those solutions. We prove analytical estimates of the remainder terms of this asymptotic expansion, and confirm by means of numerical simulations that these remainder estimates are sharp.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Quantum drift–diffusion model, Boundary layer, Elliptic system, Variational methods
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BIAN, Shen, Li CHEN, Michael DREHER, 2012. Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model. In: Journal of Differential Equations. 2012, 253(1), pp. 356-377. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2012.03.008
BibTex
@article{Bian2012Bound-22045,
  year={2012},
  doi={10.1016/j.jde.2012.03.008},
  title={Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model},
  number={1},
  volume={253},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={356--377},
  author={Bian, Shen and Chen, Li and Dreher, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22045">
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Chen, Li</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Boundary layer analysis in the semiclassical limit of a quantum drift diffusion model</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-22T14:44:29Z</dcterms:available>
    <dc:contributor>Bian, Shen</dc:contributor>
    <dc:creator>Bian, Shen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">We study a singularly perturbed elliptic second order system in one space variable as it appears in a stationary quantum drift–diffusion model of a semiconductor. We prove the existence of solutions and their uniqueness as minimizers of a certain functional and determine rigorously the principal part of an asymptotic expansion of a boundary layer of those solutions. We prove analytical estimates of the remainder terms of this asymptotic expansion, and confirm by means of numerical simulations that these remainder estimates are sharp.</dcterms:abstract>
    <dc:creator>Dreher, Michael</dc:creator>
    <dcterms:bibliographicCitation>Journal of Differential Equations ; 253 (2012), 1. - S. 356-377</dcterms:bibliographicCitation>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Dreher, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22045"/>
    <dc:creator>Chen, Li</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-02-22T14:44:29Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
PrĂĽfdatum der URL
PrĂĽfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet