Publikation: A Note on ϰ α -Saturated o-Minimal Expansions of Real Closed Fields : Dedicated to Yu. L. Ershov on the occasion of his 75th birthday
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
D’Aquino, Paola
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Algebra and Logic. 2016, 54(6), pp. 502-506. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1007/s10469-016-9369-6
Zusammenfassung
We give necessary and sufficient conditions for a polynomially bounded o-minimal expansion of a real closed field (in a language of arbitrary cardinality) to be N-alpha-saturated. The conditions are in terms of the value group, residue field, and pseudo-Cauchy sequences of the natural valuation on the real closed field. This is achieved by an analysis of types, leading to the trichotomy. Our characterization provides a construction method for saturated models, using fields of generalized power series.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
D’AQUINO, Paola, Salma KUHLMANN, 2016. A Note on ϰ α -Saturated o-Minimal Expansions of Real Closed Fields : Dedicated to Yu. L. Ershov on the occasion of his 75th birthday. In: Algebra and Logic. 2016, 54(6), pp. 502-506. ISSN 0002-5232. eISSN 1573-8302. Available under: doi: 10.1007/s10469-016-9369-6BibTex
@article{DAquino2016Satur-34932, year={2016}, doi={10.1007/s10469-016-9369-6}, title={A Note on ϰ α -Saturated o-Minimal Expansions of Real Closed Fields : Dedicated to Yu. L. Ershov on the occasion of his 75th birthday}, number={6}, volume={54}, issn={0002-5232}, journal={Algebra and Logic}, pages={502--506}, author={D’Aquino, Paola and Kuhlmann, Salma} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/34932"> <dcterms:abstract xml:lang="eng">We give necessary and sufficient conditions for a polynomially bounded o-minimal expansion of a real closed field (in a language of arbitrary cardinality) to be N-alpha-saturated. The conditions are in terms of the value group, residue field, and pseudo-Cauchy sequences of the natural valuation on the real closed field. This is achieved by an analysis of types, leading to the trichotomy. Our characterization provides a construction method for saturated models, using fields of generalized power series.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:title>A Note on ϰ α -Saturated o-Minimal Expansions of Real Closed Fields : Dedicated to Yu. L. Ershov on the occasion of his 75th birthday</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34932"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:contributor>D’Aquino, Paola</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-08-03T15:33:59Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-08-03T15:33:59Z</dcterms:available> <dc:creator>D’Aquino, Paola</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2016</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja