Publikation: Fuzzy Sets in Data Analysis : From Statistical Foundations to Machine Learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Basic ideas and formal concepts from fuzzy sets and fuzzy logic have been used successfully in various branches of science and engineering. This paper elaborates on the use of fuzzy sets in the broad field of data analysis and statistical sciences, including modern manifestations such as data mining and machine learning. In the fuzzy logic community, this branch of research has recently gained in importance, especially due to the emergence of data science as a new scientific discipline, and the increasing relevance of machine learning as a key methodology of modern artificial intelligence. This development has been accompanied by an internal shift from largely knowledge-based to strongly data-driven fuzzy modeling and systems design. Reflecting on the historical dimension and evolution of the area, we discuss the role of fuzzy logic in data analysis and related fields, highlight existing contributions of fuzzy sets in these fields, and outline interesting directions for future work.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COUSO, Ines, Christian BORGELT, Eyke HULLERMEIER, Rudolf KRUSE, 2019. Fuzzy Sets in Data Analysis : From Statistical Foundations to Machine Learning. In: IEEE Computational Intelligence Magazine. 2019, 14(1), pp. 31-44. ISSN 1556-603X. eISSN 1556-6048. Available under: doi: 10.1109/MCI.2018.2881642BibTex
@article{Couso2019-02Fuzzy-44912, year={2019}, doi={10.1109/MCI.2018.2881642}, title={Fuzzy Sets in Data Analysis : From Statistical Foundations to Machine Learning}, number={1}, volume={14}, issn={1556-603X}, journal={IEEE Computational Intelligence Magazine}, pages={31--44}, author={Couso, Ines and Borgelt, Christian and Hullermeier, Eyke and Kruse, Rudolf} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44912"> <dc:contributor>Couso, Ines</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T13:12:46Z</dcterms:available> <dc:creator>Kruse, Rudolf</dc:creator> <dcterms:abstract xml:lang="eng">Basic ideas and formal concepts from fuzzy sets and fuzzy logic have been used successfully in various branches of science and engineering. This paper elaborates on the use of fuzzy sets in the broad field of data analysis and statistical sciences, including modern manifestations such as data mining and machine learning. In the fuzzy logic community, this branch of research has recently gained in importance, especially due to the emergence of data science as a new scientific discipline, and the increasing relevance of machine learning as a key methodology of modern artificial intelligence. This development has been accompanied by an internal shift from largely knowledge-based to strongly data-driven fuzzy modeling and systems design. Reflecting on the historical dimension and evolution of the area, we discuss the role of fuzzy logic in data analysis and related fields, highlight existing contributions of fuzzy sets in these fields, and outline interesting directions for future work.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44912"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T13:12:46Z</dc:date> <dcterms:title>Fuzzy Sets in Data Analysis : From Statistical Foundations to Machine Learning</dcterms:title> <dc:creator>Hullermeier, Eyke</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:contributor>Hullermeier, Eyke</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2019-02</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Borgelt, Christian</dc:creator> <dc:creator>Couso, Ines</dc:creator> <dc:contributor>Kruse, Rudolf</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>