Publikation: Quantum Semiconductor Models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We give an overview of analytic investigations of quantum semiconductor models, where we focus our attention on two classes of models: quantum drift diffusion models, and quantum hydrodynamic models. The key feature of those models is a quantum interaction term which introduces a perturbation term with higher-order derivatives into a system which otherwise might be seen as a fluid dynamic system. After a discussion of the modeling, we present the quantum drift diffusion model in detail, discuss various versions of this model, list typical questions and the tools how to answer them, and we give an account of the state-of-the-art of concerning this model. Then we discuss the quantum hydrodynamic model, which figures as an application of the theory of mixed-order parameter-elliptic systems in the sense of Douglis, Nirenberg, and Volevich. For various versions of this model, we give a unified proof of the local existence of classical solutions. Furthermore, we present new results on the existence as well as the exponential stability of steady states, with explicit description of the decay rate.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DREHER, Michael, Li CHEN, 2011. Quantum Semiconductor Models. In: DEMUTH, Michael, ed.. Partial Differential Equations and Spectral Theory. Basel: Springer, 2011, pp. 1-72. Operator Theory : Advances and Applications. 211. ISBN 978-3-0348-0023-5BibTex
@incollection{Dreher2011Quant-814, year={2011}, title={Quantum Semiconductor Models}, number={211}, isbn={978-3-0348-0023-5}, publisher={Springer}, address={Basel}, series={Operator Theory : Advances and Applications}, booktitle={Partial Differential Equations and Spectral Theory}, pages={1--72}, editor={Demuth, Michael}, author={Dreher, Michael and Chen, Li} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/814"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We give an overview of analytic investigations of quantum semiconductor models, where we focus our attention on two classes of models: quantum drift diffusion models, and quantum hydrodynamic models. The key feature of those models is a quantum interaction term which introduces a perturbation term with higher-order derivatives into a system which otherwise might be seen as a fluid dynamic system. After a discussion of the modeling, we present the quantum drift diffusion model in detail, discuss various versions of this model, list typical questions and the tools how to answer them, and we give an account of the state-of-the-art of concerning this model. Then we discuss the quantum hydrodynamic model, which figures as an application of the theory of mixed-order parameter-elliptic systems in the sense of Douglis, Nirenberg, and Volevich. For various versions of this model, we give a unified proof of the local existence of classical solutions. Furthermore, we present new results on the existence as well as the exponential stability of steady states, with explicit description of the decay rate.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/814"/> <dc:contributor>Dreher, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Chen, Li</dc:contributor> <dcterms:title>Quantum Semiconductor Models</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Dreher, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:59Z</dcterms:available> <dc:creator>Chen, Li</dc:creator> <dcterms:bibliographicCitation>Publ. in: Partial Differential Equations and Spectral Theory / Ed.: Demuth, Michael. Basel : Springer, 2011. - S. 1-72. - (Operator Theory: Advances and Applications ; 211)</dcterms:bibliographicCitation> <dcterms:issued>2011</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:59Z</dc:date> </rdf:Description> </rdf:RDF>