Publikation:

Quantum Semiconductor Models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2011

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

DEMUTH, Michael, ed.. Partial Differential Equations and Spectral Theory. Basel: Springer, 2011, pp. 1-72. Operator Theory : Advances and Applications. 211. ISBN 978-3-0348-0023-5

Zusammenfassung

We give an overview of analytic investigations of quantum semiconductor models, where we focus our attention on two classes of models: quantum drift diffusion models, and quantum hydrodynamic models. The key feature of those models is a quantum interaction term which introduces a perturbation term with higher-order derivatives into a system which otherwise might be seen as a fluid dynamic system. After a discussion of the modeling, we present the quantum drift diffusion model in detail, discuss various versions of this model, list typical questions and the tools how to answer them, and we give an account of the state-of-the-art of concerning this model. Then we discuss the quantum hydrodynamic model, which figures as an application of the theory of mixed-order parameter-elliptic systems in the sense of Douglis, Nirenberg, and Volevich. For various versions of this model, we give a unified proof of the local existence of classical solutions. Furthermore, we present new results on the existence as well as the exponential stability of steady states, with explicit description of the decay rate.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

quantum drift diffusion model, quantum hydrodynamic model, parameter-elliptic systems, Douglis-Nirenberg systems

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DREHER, Michael, Li CHEN, 2011. Quantum Semiconductor Models. In: DEMUTH, Michael, ed.. Partial Differential Equations and Spectral Theory. Basel: Springer, 2011, pp. 1-72. Operator Theory : Advances and Applications. 211. ISBN 978-3-0348-0023-5
BibTex
@incollection{Dreher2011Quant-814,
  year={2011},
  title={Quantum Semiconductor Models},
  number={211},
  isbn={978-3-0348-0023-5},
  publisher={Springer},
  address={Basel},
  series={Operator Theory : Advances and Applications},
  booktitle={Partial Differential Equations and Spectral Theory},
  pages={1--72},
  editor={Demuth, Michael},
  author={Dreher, Michael and Chen, Li}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/814">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We give an overview of analytic investigations of quantum semiconductor models, where we focus our attention on two classes of models: quantum drift diffusion models, and quantum hydrodynamic models. The key feature of those models is a quantum interaction term which introduces a perturbation term with higher-order derivatives into a system which otherwise might be seen as a fluid dynamic system. After a discussion of the modeling, we present the quantum drift diffusion model in detail, discuss various versions of this model, list typical questions and the tools how to answer them, and we give an account of the state-of-the-art of concerning this model. Then we discuss the quantum hydrodynamic model, which figures as an application of the theory of mixed-order parameter-elliptic systems in the sense of Douglis, Nirenberg, and Volevich. For various versions of this model, we give a unified proof of the local existence of classical solutions. Furthermore, we present new results on the existence as well as the exponential stability of steady states, with explicit description of the decay rate.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/814"/>
    <dc:contributor>Dreher, Michael</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Chen, Li</dc:contributor>
    <dcterms:title>Quantum Semiconductor Models</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Dreher, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:59Z</dcterms:available>
    <dc:creator>Chen, Li</dc:creator>
    <dcterms:bibliographicCitation>Publ. in: Partial Differential Equations and Spectral Theory / Ed.: Demuth, Michael. Basel : Springer, 2011. - S. 1-72. - (Operator Theory: Advances and Applications ; 211)</dcterms:bibliographicCitation>
    <dcterms:issued>2011</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:59Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen