Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs
Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs
Loading...
Date
2021
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
IEEE Transactions on Visualization and Computer Graphics (T-VCG) ; 27 (2021), 2. - pp. 517-527. - IEEE. - ISSN 1077-2626. - eISSN 1941-0506
Abstract
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Dynamic Graph, Dynamic Network, Unsupervised Graph Learning, Graph Embedding, Multiscale Visualization
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
CAKMAK, Eren, Udo SCHLEGEL, Dominik JÄCKLE, Daniel A. KEIM, Tobias SCHRECK, 2021. Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. 27(2), pp. 517-527. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030398BibTex
@article{Cakmak2021-02Multi-53077, year={2021}, doi={10.1109/TVCG.2020.3030398}, title={Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)}, pages={517--527}, author={Cakmak, Eren and Schlegel, Udo and Jäckle, Dominik and Keim, Daniel A. and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53077"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/> <dcterms:issued>2021-02</dcterms:issued> <dc:creator>Jäckle, Dominik</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cakmak, Eren</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dc:date> <dcterms:title>Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs</dcterms:title> <dc:creator>Cakmak, Eren</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53077"/> <dcterms:abstract xml:lang="eng">The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Jäckle, Dominik</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes