Publikation: Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 830892
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CAKMAK, Eren, Udo SCHLEGEL, Dominik JÄCKLE, Daniel A. KEIM, Tobias SCHRECK, 2021. Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs. In: IEEE Transactions on Visualization and Computer Graphics (T-VCG). IEEE. 2021, 27(2), S. 517-527. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2020.3030398BibTex
@article{Cakmak2021-02Multi-53077, year={2021}, doi={10.1109/TVCG.2020.3030398}, title={Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics (T-VCG)}, pages={517--527}, author={Cakmak, Eren and Schlegel, Udo and Jäckle, Dominik and Keim, Daniel A. and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53077"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/> <dcterms:issued>2021-02</dcterms:issued> <dc:creator>Jäckle, Dominik</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreck, Tobias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cakmak, Eren</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53077/1/Cakmak_2-w917n1w06ydu7.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dc:date> <dcterms:title>Multiscale Snapshots : Visual Analysis of Temporal Summaries in Dynamic Graphs</dcterms:title> <dc:creator>Cakmak, Eren</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-05T09:04:01Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53077"/> <dcterms:abstract xml:lang="eng">The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Jäckle, Dominik</dc:contributor> </rdf:Description> </rdf:RDF>