Publikation:

Efficient orbit-aware triad and quad census in directed and undirected graphs

Lade...
Vorschaubild

Dateien

Ortmann_0-419552.pdf
Ortmann_0-419552.pdfGröße: 1.33 MBDownloads: 345

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Applied Network Science. 2017, 2, 13. eISSN 2364-8228. Available under: doi: 10.1007/s41109-017-0027-2

Zusammenfassung

The prevalence of select substructures is an indicator of network effects in applications such as social network analysis and systems biology. Moreover, subgraph statistics are pervasive in stochastic network models, and they need to be assessed repeatedly in MCMC sampling and estimation algorithms. We present a new approach to count all induced and non-induced four-node subgraphs (the quad census) on a per-node and per-edge basis, complete with a separation into their non-automorphic roles in these subgraphs. It is the first approach to do so in a unified manner, and is based on only a clique-listing subroutine. Computational experiments indicate that, despite its simplicity, the approach outperforms previous, less general approaches.

By way of the more presentable triad census, we additionally show how to extend the quad census to directed graphs. As a byproduct we obtain the asymptotically fastest triad census algorithm to date.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Graphlets, Motifs, Subgraph census, Graph statistics

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ORTMANN, Mark, Ulrik BRANDES, 2017. Efficient orbit-aware triad and quad census in directed and undirected graphs. In: Applied Network Science. 2017, 2, 13. eISSN 2364-8228. Available under: doi: 10.1007/s41109-017-0027-2
BibTex
@article{Ortmann2017-12Effic-39740,
  year={2017},
  doi={10.1007/s41109-017-0027-2},
  title={Efficient orbit-aware triad and quad census in directed and undirected graphs},
  volume={2},
  journal={Applied Network Science},
  author={Ortmann, Mark and Brandes, Ulrik},
  note={Article Number: 13}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39740">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T13:04:39Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">The prevalence of select substructures is an indicator of network effects in applications such as social network analysis and systems biology. Moreover, subgraph statistics are pervasive in stochastic network models, and they need to be assessed repeatedly in MCMC sampling and estimation algorithms. We present a new approach to count all induced and non-induced four-node subgraphs (the quad census) on a per-node and per-edge basis, complete with a separation into their non-automorphic roles in these subgraphs. It is the first approach to do so in a unified manner, and is based on only a clique-listing subroutine. Computational experiments indicate that, despite its simplicity, the approach outperforms previous, less general approaches.&lt;br /&gt;&lt;br /&gt;By way of the more presentable triad census, we additionally show how to extend the quad census to directed graphs. As a byproduct we obtain the asymptotically fastest triad census algorithm to date.</dcterms:abstract>
    <dc:creator>Ortmann, Mark</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Ortmann, Mark</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-02T13:04:39Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dcterms:issued>2017-12</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39740"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39740/1/Ortmann_0-419552.pdf"/>
    <dcterms:title>Efficient orbit-aware triad and quad census in directed and undirected graphs</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39740/1/Ortmann_0-419552.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:creator>Brandes, Ulrik</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen