Publikation: TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHLEGEL, Udo, Duy Lam VO, Daniel A. KEIM, Daniel SEEBACHER, 2022. TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models. Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, 13. Sept. 2021 - 17. Sept. 2021. In: KAMP, Michael, ed. and others. Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Proceedings, Part I. Cham: Springer, 2022, pp. 5-14. Communications in Computer and Information Science. 1524. ISBN 978-3-030-93735-5. Available under: doi: 10.1007/978-3-030-93736-2_1BibTex
@inproceedings{Schlegel2022TSMUL-55037, year={2022}, doi={10.1007/978-3-030-93736-2_1}, title={TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models}, number={1524}, isbn={978-3-030-93735-5}, publisher={Springer}, address={Cham}, series={Communications in Computer and Information Science}, booktitle={Machine Learning and Principles and Practice of Knowledge Discovery in Databases : International Workshops of ECML PKDD 2021, Proceedings, Part I}, pages={5--14}, editor={Kamp, Michael}, author={Schlegel, Udo and Vo, Duy Lam and Keim, Daniel A. and Seebacher, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55037"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55037"/> <dc:creator>Vo, Duy Lam</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Time series forecasting is a demanding task ranging from weather to failure forecasting with black-box models achieving state-of-the-art performances. However, understanding and debugging are not guaranteed. We propose TS-MULE, a local surrogate model explanation method specialized for time series extending the LIME approach. Our extended LIME works with various ways to segment and perturb the time series data. In our extension, we present six sampling segmentation approaches for time series to improve the quality of surrogate attributions and demonstrate their performances on three deep learning model architectures and three common multivariate time series datasets.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-27T13:05:59Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2022</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schlegel, Udo</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55037/1/Schlegel_2-vxq3bhqko6i12.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>TS-MULE : Local Interpretable Model-Agnostic Explanations for Time Series Forecast Models</dcterms:title> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55037/1/Schlegel_2-vxq3bhqko6i12.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-27T13:05:59Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Seebacher, Daniel</dc:creator> <dc:contributor>Vo, Duy Lam</dc:contributor> </rdf:Description> </rdf:RDF>