Publikation: Shadow and Specularity Priors for Intrinsic Light Field Decomposition
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, we focus on the problem of intrinsic scene decomposition in light fields. Our main contribution is a novel prior to cope with cast shadows and inter-reflections. In contrast to other approaches which model inter-reflection based only on geometry, we model indirect shading by combining geometric and color information. We compute a shadow confidence measure for the light field and use it in the regularization constraints. Another contribution is an improved specularity estimation by using color information from sub-aperture views. The new priors are embedded in a recent framework to decompose the input light field into albedo, shading, and specularity. We arrive at a variational model where we regularize albedo and the two shading components on epipolar plane images, encouraging them to be consistent across all sub-aperture views. Our method is evaluated on ground truth synthetic datasets and real world light fields. We outperform both state-of-the art approaches for RGB+D images and recent methods proposed for light fields.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ALPEROVICH, Anna, Ole JOHANNSEN, Michael STRECKE, Bastian GOLDLÜCKE, 2018. Shadow and Specularity Priors for Intrinsic Light Field Decomposition. 11th International Conference, EMMCVPR 2017. Venice, Italy, 30. Okt. 2017 - 1. Nov. 2017. In: PELILLO, Marcello, ed., Edwin HANCOCK, ed.. International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition EMMCVPR 2017: Energy Minimization Methods in Computer Vision and Pattern Recognition. Cham: Springer, 2018, pp. 389-406. Lecture Notes in Computer Science. 10746. ISBN 978-3-319-78198-3. Available under: doi: 10.1007/978-3-319-78199-0_26BibTex
@inproceedings{Alperovich2018Shado-42891, year={2018}, doi={10.1007/978-3-319-78199-0_26}, title={Shadow and Specularity Priors for Intrinsic Light Field Decomposition}, number={10746}, isbn={978-3-319-78198-3}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition EMMCVPR 2017: Energy Minimization Methods in Computer Vision and Pattern Recognition}, pages={389--406}, editor={Pelillo, Marcello and Hancock, Edwin}, author={Alperovich, Anna and Johannsen, Ole and Strecke, Michael and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42891"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-20T08:16:45Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Johannsen, Ole</dc:contributor> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Alperovich, Anna</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Johannsen, Ole</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42891"/> <dc:creator>Alperovich, Anna</dc:creator> <dc:language>eng</dc:language> <dc:creator>Strecke, Michael</dc:creator> <dcterms:title>Shadow and Specularity Priors for Intrinsic Light Field Decomposition</dcterms:title> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Strecke, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-20T08:16:45Z</dc:date> <dcterms:abstract xml:lang="eng">In this work, we focus on the problem of intrinsic scene decomposition in light fields. Our main contribution is a novel prior to cope with cast shadows and inter-reflections. In contrast to other approaches which model inter-reflection based only on geometry, we model indirect shading by combining geometric and color information. We compute a shadow confidence measure for the light field and use it in the regularization constraints. Another contribution is an improved specularity estimation by using color information from sub-aperture views. The new priors are embedded in a recent framework to decompose the input light field into albedo, shading, and specularity. We arrive at a variational model where we regularize albedo and the two shading components on epipolar plane images, encouraging them to be consistent across all sub-aperture views. Our method is evaluated on ground truth synthetic datasets and real world light fields. We outperform both state-of-the art approaches for RGB+D images and recent methods proposed for light fields.</dcterms:abstract> </rdf:Description> </rdf:RDF>