Publikation: Bayesian Nets Are All There Is To Causal Dependence
Lade...
Dateien
Datum
2001
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
MARIA CARLA GALAVOTTI, , ed. and others. Stochastic causality. Stanford: CSLI Publ., 2001, pp. 157-172. CSLI lecture notes. 131. ISBN 1-57586-321-9
Zusammenfassung
The paper displays the similarity between the theory of probabilistic causation developed by Glymour et al. since 1983 and mine developed since 1976: the core of both is that causal graphs are Bayesian nets. The similarity extends to the treatment of actions or interventions in the two theories. But there is also a crucial difference. Glymour et al. take causal dependencies as primitive and argue them to behave like Bayesian nets under wide circumstances. By contrast, I argue the behavior of Bayesian nets to be ultimately the defining characteristic of causal dependence.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SPOHN, Wolfgang, 2001. Bayesian Nets Are All There Is To Causal Dependence. In: MARIA CARLA GALAVOTTI, , ed. and others. Stochastic causality. Stanford: CSLI Publ., 2001, pp. 157-172. CSLI lecture notes. 131. ISBN 1-57586-321-9BibTex
@incollection{Spohn2001Bayes-3550, year={2001}, title={Bayesian Nets Are All There Is To Causal Dependence}, number={131}, isbn={1-57586-321-9}, publisher={CSLI Publ.}, address={Stanford}, series={CSLI lecture notes}, booktitle={Stochastic causality}, pages={157--172}, editor={Maria Carla Galavotti}, author={Spohn, Wolfgang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3550"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Stochastic causality / ed. by Maria Carla Galavotti ... - Stanford: CSLI Publ., 2001. - pp. 157-172. - (CSLI lecture notes ; 131) . - ISBN 1-57586-321-9</dcterms:bibliographicCitation> <dcterms:issued>2001</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:abstract xml:lang="eng">The paper displays the similarity between the theory of probabilistic causation developed by Glymour et al. since 1983 and mine developed since 1976: the core of both is that causal graphs are Bayesian nets. The similarity extends to the treatment of actions or interventions in the two theories. But there is also a crucial difference. Glymour et al. take causal dependencies as primitive and argue them to behave like Bayesian nets under wide circumstances. By contrast, I argue the behavior of Bayesian nets to be ultimately the defining characteristic of causal dependence.</dcterms:abstract> <dc:format>application/pdf</dc:format> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Spohn, Wolfgang</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3550/1/Spohn.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3550/1/Spohn.pdf"/> <dc:contributor>Spohn, Wolfgang</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:43Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3550"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:43Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:title>Bayesian Nets Are All There Is To Causal Dependence</dcterms:title> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein