Publikation:

Bayesian Nets Are All There Is To Causal Dependence

Lade...
Vorschaubild

Dateien

Spohn.pdf
Spohn.pdfGröße: 93.75 KBDownloads: 495

Datum

2001

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

MARIA CARLA GALAVOTTI, , ed. and others. Stochastic causality. Stanford: CSLI Publ., 2001, pp. 157-172. CSLI lecture notes. 131. ISBN 1-57586-321-9

Zusammenfassung

The paper displays the similarity between the theory of probabilistic causation developed by Glymour et al. since 1983 and mine developed since 1976: the core of both is that causal graphs are Bayesian nets. The similarity extends to the treatment of actions or interventions in the two theories. But there is also a crucial difference. Glymour et al. take causal dependencies as primitive and argue them to behave like Bayesian nets under wide circumstances. By contrast, I argue the behavior of Bayesian nets to be ultimately the defining characteristic of causal dependence.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPOHN, Wolfgang, 2001. Bayesian Nets Are All There Is To Causal Dependence. In: MARIA CARLA GALAVOTTI, , ed. and others. Stochastic causality. Stanford: CSLI Publ., 2001, pp. 157-172. CSLI lecture notes. 131. ISBN 1-57586-321-9
BibTex
@incollection{Spohn2001Bayes-3550,
  year={2001},
  title={Bayesian Nets Are All There Is To Causal Dependence},
  number={131},
  isbn={1-57586-321-9},
  publisher={CSLI Publ.},
  address={Stanford},
  series={CSLI lecture notes},
  booktitle={Stochastic causality},
  pages={157--172},
  editor={Maria Carla Galavotti},
  author={Spohn, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3550">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>First publ. in: Stochastic causality / ed. by Maria Carla Galavotti ... - Stanford: CSLI Publ., 2001. - pp. 157-172. - (CSLI lecture notes ; 131) . - ISBN 1-57586-321-9</dcterms:bibliographicCitation>
    <dcterms:issued>2001</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:abstract xml:lang="eng">The paper displays the similarity between the theory of probabilistic causation developed by Glymour et al. since 1983 and mine developed since 1976: the core of both is that causal graphs are Bayesian nets. The similarity extends to the treatment of actions or interventions in the two theories. But there is also a crucial difference. Glymour et al. take causal dependencies as primitive and argue them to behave like Bayesian nets under wide circumstances. By contrast, I argue the behavior of Bayesian nets to be ultimately the defining characteristic of causal dependence.</dcterms:abstract>
    <dc:format>application/pdf</dc:format>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Spohn, Wolfgang</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3550/1/Spohn.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3550/1/Spohn.pdf"/>
    <dc:contributor>Spohn, Wolfgang</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:43Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3550"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:43Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:title>Bayesian Nets Are All There Is To Causal Dependence</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen