Feedback-driven interactive exploration of large multidimensional data supported by visual classifier

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 43-52. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042480
Zusammenfassung

The extraction of relevant and meaningful information from multivariate or high-dimensional data is a challenging problem. One reason for this is that the number of possible representations, which might contain relevant information, grows exponentially with the amount of data dimensions. Also, not all views from a possibly large view space, are potentially relevant to a given analysis task or user. Focus+Context or Semantic Zoom Interfaces can help to some extent to efficiently search for interesting views or data segments, yet they show scalability problems for very large data sets. Accordingly, users are confronted with the problem of identifying interesting views, yet the manual exploration of the entire view space becomes ineffective or even infeasible. While certain quality metrics have been proposed recently to identify potentially interesting views, these often are defined in a heuristic way and do not take into account the application or user context. We introduce a framework for a feedback-driven view exploration, inspired by relevance feedback approaches used in Information Retrieval. Our basic idea is that users iteratively express their notion of interestingness when presented with candidate views. From that expression, a model representing the user's preferences, is trained and used to recommend further interesting view candidates. A decision support system monitors the exploration process and assesses the relevance-driven search process for convergence and stability. We present an instantiation of our framework for exploration of Scatter Plot Spaces based on visual features. We demonstrate the effectiveness of this implementation by a case study on two real-world datasets. We also discuss our framework in light of design alternatives and point out its usefulness for development of user- and context-dependent visual exploration systems.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Interesting View Problem, Relevance Feedback, User Preference Model, View Space Exploration Framework
Konferenz
IEEE Conference on Visual Analytics Science and Technology (VAST), 2014, 9. Okt. 2014 - 14. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BEHRISCH, Michael, Fatih KORKMAZ, Lin SHAO, Tobias SCHRECK, 2014. Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 43-52. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042480
BibTex
@inproceedings{Behrisch2014Feedb-30204,
  year={2014},
  doi={10.1109/VAST.2014.7042480},
  title={Feedback-driven interactive exploration of large multidimensional data supported by visual classifier},
  isbn={978-1-4799-6227-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings},
  pages={43--52},
  editor={Min Chen ...},
  author={Behrisch, Michael and Korkmaz, Fatih and Shao, Lin and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30204">
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T13:38:37Z</dc:date>
    <dc:creator>Korkmaz, Fatih</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Shao, Lin</dc:creator>
    <dcterms:title>Feedback-driven interactive exploration of large multidimensional data supported by visual classifier</dcterms:title>
    <dcterms:issued>2014</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30204"/>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dcterms:abstract xml:lang="eng">The extraction of relevant and meaningful information from multivariate or high-dimensional data is a challenging problem. One reason for this is that the number of possible representations, which might contain relevant information, grows exponentially with the amount of data dimensions. Also, not all views from a possibly large view space, are potentially relevant to a given analysis task or user. Focus+Context or Semantic Zoom Interfaces can help to some extent to efficiently search for interesting views or data segments, yet they show scalability problems for very large data sets. Accordingly, users are confronted with the problem of identifying interesting views, yet the manual exploration of the entire view space becomes ineffective or even infeasible. While certain quality metrics have been proposed recently to identify potentially interesting views, these often are defined in a heuristic way and do not take into account the application or user context. We introduce a framework for a feedback-driven view exploration, inspired by relevance feedback approaches used in Information Retrieval. Our basic idea is that users iteratively express their notion of interestingness when presented with candidate views. From that expression, a model representing the user's preferences, is trained and used to recommend further interesting view candidates. A decision support system monitors the exploration process and assesses the relevance-driven search process for convergence and stability. We present an instantiation of our framework for exploration of Scatter Plot Spaces based on visual features. We demonstrate the effectiveness of this implementation by a case study on two real-world datasets. We also discuss our framework in light of design alternatives and point out its usefulness for development of user- and context-dependent visual exploration systems.</dcterms:abstract>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:contributor>Korkmaz, Fatih</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T13:38:37Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen