Publikation:

Feedback-driven interactive exploration of large multidimensional data supported by visual classifier

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 43-52. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042480

Zusammenfassung

The extraction of relevant and meaningful information from multivariate or high-dimensional data is a challenging problem. One reason for this is that the number of possible representations, which might contain relevant information, grows exponentially with the amount of data dimensions. Also, not all views from a possibly large view space, are potentially relevant to a given analysis task or user. Focus+Context or Semantic Zoom Interfaces can help to some extent to efficiently search for interesting views or data segments, yet they show scalability problems for very large data sets. Accordingly, users are confronted with the problem of identifying interesting views, yet the manual exploration of the entire view space becomes ineffective or even infeasible. While certain quality metrics have been proposed recently to identify potentially interesting views, these often are defined in a heuristic way and do not take into account the application or user context. We introduce a framework for a feedback-driven view exploration, inspired by relevance feedback approaches used in Information Retrieval. Our basic idea is that users iteratively express their notion of interestingness when presented with candidate views. From that expression, a model representing the user's preferences, is trained and used to recommend further interesting view candidates. A decision support system monitors the exploration process and assesses the relevance-driven search process for convergence and stability. We present an instantiation of our framework for exploration of Scatter Plot Spaces based on visual features. We demonstrate the effectiveness of this implementation by a case study on two real-world datasets. We also discuss our framework in light of design alternatives and point out its usefulness for development of user- and context-dependent visual exploration systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Interesting View Problem, Relevance Feedback, User Preference Model, View Space Exploration Framework

Konferenz

IEEE Conference on Visual Analytics Science and Technology (VAST), 2014, 9. Okt. 2014 - 14. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEHRISCH, Michael, Fatih KORKMAZ, Lin SHAO, Tobias SCHRECK, 2014. Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. IEEE Conference on Visual Analytics Science and Technology (VAST), 2014. Paris, 9. Okt. 2014 - 14. Okt. 2014. In: MIN CHEN ..., , ed.. 2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings. Piscataway, NJ: IEEE, 2014, pp. 43-52. ISBN 978-1-4799-6227-3. Available under: doi: 10.1109/VAST.2014.7042480
BibTex
@inproceedings{Behrisch2014Feedb-30204,
  year={2014},
  doi={10.1109/VAST.2014.7042480},
  title={Feedback-driven interactive exploration of large multidimensional data supported by visual classifier},
  isbn={978-1-4799-6227-3},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2014 IEEE Conference on Visual Analytics Science and Technology, Paris, France, 9-14 October 2014, Proceedings},
  pages={43--52},
  editor={Min Chen ...},
  author={Behrisch, Michael and Korkmaz, Fatih and Shao, Lin and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30204">
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T13:38:37Z</dc:date>
    <dc:creator>Korkmaz, Fatih</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Shao, Lin</dc:creator>
    <dcterms:title>Feedback-driven interactive exploration of large multidimensional data supported by visual classifier</dcterms:title>
    <dcterms:issued>2014</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30204"/>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dcterms:abstract xml:lang="eng">The extraction of relevant and meaningful information from multivariate or high-dimensional data is a challenging problem. One reason for this is that the number of possible representations, which might contain relevant information, grows exponentially with the amount of data dimensions. Also, not all views from a possibly large view space, are potentially relevant to a given analysis task or user. Focus+Context or Semantic Zoom Interfaces can help to some extent to efficiently search for interesting views or data segments, yet they show scalability problems for very large data sets. Accordingly, users are confronted with the problem of identifying interesting views, yet the manual exploration of the entire view space becomes ineffective or even infeasible. While certain quality metrics have been proposed recently to identify potentially interesting views, these often are defined in a heuristic way and do not take into account the application or user context. We introduce a framework for a feedback-driven view exploration, inspired by relevance feedback approaches used in Information Retrieval. Our basic idea is that users iteratively express their notion of interestingness when presented with candidate views. From that expression, a model representing the user's preferences, is trained and used to recommend further interesting view candidates. A decision support system monitors the exploration process and assesses the relevance-driven search process for convergence and stability. We present an instantiation of our framework for exploration of Scatter Plot Spaces based on visual features. We demonstrate the effectiveness of this implementation by a case study on two real-world datasets. We also discuss our framework in light of design alternatives and point out its usefulness for development of user- and context-dependent visual exploration systems.</dcterms:abstract>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:contributor>Korkmaz, Fatih</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T13:38:37Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen