Publikation: Estimation and empirical performance of non-scalar dynamic conditional correlation models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A method capable of estimating richly parametrized versions of the dynamic conditional correlation (DCC) model that go beyond the standard scalar case is presented. The algorithm is based on the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method that handles the various non-linear stationarity and positivity constraints that arise in this context. The general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, two different rank one matrix specifications are considered. In the last mentioned case, the elements of the vectors that determine the rank one parameter matrices are either arbitrary or parsimoniously defined using the Almon lag function. Actual stock returns data in dimensions up to thirty are used in order to carry out performance comparisons according to several in- and out-of-sample criteria. Empirical results show that the use of richly parametrized models adds value with respect to the conventional scalar case.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAUWENS, Luc, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, 2016. Estimation and empirical performance of non-scalar dynamic conditional correlation models. In: Computational Statistics & Data Analysis. 2016, 100, pp. 17-36. ISSN 0167-9473. eISSN 1872-7352. Available under: doi: 10.1016/j.csda.2015.02.013BibTex
@article{Bauwens2016-08Estim-40577,
year={2016},
doi={10.1016/j.csda.2015.02.013},
title={Estimation and empirical performance of non-scalar dynamic conditional correlation models},
volume={100},
issn={0167-9473},
journal={Computational Statistics & Data Analysis},
pages={17--36},
author={Bauwens, Luc and Grigoryeva, Lyudmila and Ortega, Juan-Pablo}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40577">
<dc:contributor>Bauwens, Luc</dc:contributor>
<dc:language>eng</dc:language>
<dc:contributor>Ortega, Juan-Pablo</dc:contributor>
<dc:creator>Ortega, Juan-Pablo</dc:creator>
<dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
<dc:creator>Grigoryeva, Lyudmila</dc:creator>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:title>Estimation and empirical performance of non-scalar dynamic conditional correlation models</dcterms:title>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:28:31Z</dc:date>
<dc:creator>Bauwens, Luc</dc:creator>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:28:31Z</dcterms:available>
<dcterms:issued>2016-08</dcterms:issued>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40577"/>
<dcterms:abstract xml:lang="eng">A method capable of estimating richly parametrized versions of the dynamic conditional correlation (DCC) model that go beyond the standard scalar case is presented. The algorithm is based on the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method that handles the various non-linear stationarity and positivity constraints that arise in this context. The general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, two different rank one matrix specifications are considered. In the last mentioned case, the elements of the vectors that determine the rank one parameter matrices are either arbitrary or parsimoniously defined using the Almon lag function. Actual stock returns data in dimensions up to thirty are used in order to carry out performance comparisons according to several in- and out-of-sample criteria. Empirical results show that the use of richly parametrized models adds value with respect to the conventional scalar case.</dcterms:abstract>
</rdf:Description>
</rdf:RDF>