Publikation:

Estimation and empirical performance of non-scalar dynamic conditional correlation models

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Bauwens, Luc
Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computational Statistics & Data Analysis. 2016, 100, pp. 17-36. ISSN 0167-9473. eISSN 1872-7352. Available under: doi: 10.1016/j.csda.2015.02.013

Zusammenfassung

A method capable of estimating richly parametrized versions of the dynamic conditional correlation (DCC) model that go beyond the standard scalar case is presented. The algorithm is based on the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method that handles the various non-linear stationarity and positivity constraints that arise in this context. The general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, two different rank one matrix specifications are considered. In the last mentioned case, the elements of the vectors that determine the rank one parameter matrices are either arbitrary or parsimoniously defined using the Almon lag function. Actual stock returns data in dimensions up to thirty are used in order to carry out performance comparisons according to several in- and out-of-sample criteria. Empirical results show that the use of richly parametrized models adds value with respect to the conventional scalar case.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Multivariate volatility modeling, Dynamic conditional correlations (DCC), Non-scalar DCC models, Constrained optimization, Bregman divergences, Bregman-proximal trust-region method

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BAUWENS, Luc, Lyudmila GRIGORYEVA, Juan-Pablo ORTEGA, 2016. Estimation and empirical performance of non-scalar dynamic conditional correlation models. In: Computational Statistics & Data Analysis. 2016, 100, pp. 17-36. ISSN 0167-9473. eISSN 1872-7352. Available under: doi: 10.1016/j.csda.2015.02.013
BibTex
@article{Bauwens2016-08Estim-40577,
  year={2016},
  doi={10.1016/j.csda.2015.02.013},
  title={Estimation and empirical performance of non-scalar dynamic conditional correlation models},
  volume={100},
  issn={0167-9473},
  journal={Computational Statistics & Data Analysis},
  pages={17--36},
  author={Bauwens, Luc and Grigoryeva, Lyudmila and Ortega, Juan-Pablo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40577">
    <dc:contributor>Bauwens, Luc</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Estimation and empirical performance of non-scalar dynamic conditional correlation models</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:28:31Z</dc:date>
    <dc:creator>Bauwens, Luc</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:28:31Z</dcterms:available>
    <dcterms:issued>2016-08</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40577"/>
    <dcterms:abstract xml:lang="eng">A method capable of estimating richly parametrized versions of the dynamic conditional correlation (DCC) model that go beyond the standard scalar case is presented. The algorithm is based on the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method that handles the various non-linear stationarity and positivity constraints that arise in this context. The general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, two different rank one matrix specifications are considered. In the last mentioned case, the elements of the vectors that determine the rank one parameter matrices are either arbitrary or parsimoniously defined using the Almon lag function. Actual stock returns data in dimensions up to thirty are used in order to carry out performance comparisons according to several in- and out-of-sample criteria. Empirical results show that the use of richly parametrized models adds value with respect to the conventional scalar case.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen