Pushing the Limit in Visual Data Exploration : Techniques and Applications
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, Ming C. HAO, Umeshwar DAYAL, 2003. Pushing the Limit in Visual Data Exploration : Techniques and Applications. In: GÜNTER, Andreas, ed. and others. KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Berlin [u.a.]: Springer, 2003, pp. 37-51. Lecture notes in computer science : Lecture notes in artificial intelligence. 2821. ISBN 978-3-540-20059-8BibTex
@inproceedings{Keim2003Pushi-5615, year={2003}, title={Pushing the Limit in Visual Data Exploration : Techniques and Applications}, number={2821}, isbn={978-3-540-20059-8}, publisher={Springer}, address={Berlin [u.a.]}, series={Lecture notes in computer science : Lecture notes in artificial intelligence}, booktitle={KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003}, pages={37--51}, editor={Günter, Andreas}, author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike and Hao, Ming C. and Dayal, Umeshwar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5615"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>First publ. in: Lecture notes in artificial intelligence, No 2821 (2003), pp. 37-51</dcterms:bibliographicCitation> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dcterms:available> <dc:creator>Hao, Ming C.</dc:creator> <dcterms:title>Pushing the Limit in Visual Data Exploration : Techniques and Applications</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dc:date> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:language>eng</dc:language> <dc:creator>Panse, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2003</dcterms:issued> <dc:contributor>Panse, Christian</dc:contributor> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:abstract xml:lang="eng">With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.</dcterms:abstract> <dc:contributor>Sips, Mike</dc:contributor> <dc:contributor>Dayal, Umeshwar</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5615"/> <dc:creator>Sips, Mike</dc:creator> <dc:creator>Schneidewind, Jörn</dc:creator> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Schneidewind, Jörn</dc:contributor> <dc:creator>Dayal, Umeshwar</dc:creator> </rdf:Description> </rdf:RDF>