Publikation:

Pushing the Limit in Visual Data Exploration : Techniques and Applications

Lade...
Vorschaubild

Dateien

KI2003.pdf
KI2003.pdfGröße: 1.35 MBDownloads: 350

Datum

2003

Autor:innen

Panse, Christian
Schneidewind, Jörn
Sips, Mike
Hao, Ming C.
Dayal, Umeshwar

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GÜNTER, Andreas, ed. and others. KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Berlin [u.a.]: Springer, 2003, pp. 37-51. Lecture notes in computer science : Lecture notes in artificial intelligence. 2821. ISBN 978-3-540-20059-8

Zusammenfassung

With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Information Visualization, Visual Data Mining, Visual Exploration, Knowledge Discovery, Pixel Displays

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Christian PANSE, Jörn SCHNEIDEWIND, Mike SIPS, Ming C. HAO, Umeshwar DAYAL, 2003. Pushing the Limit in Visual Data Exploration : Techniques and Applications. In: GÜNTER, Andreas, ed. and others. KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003. Berlin [u.a.]: Springer, 2003, pp. 37-51. Lecture notes in computer science : Lecture notes in artificial intelligence. 2821. ISBN 978-3-540-20059-8
BibTex
@inproceedings{Keim2003Pushi-5615,
  year={2003},
  title={Pushing the Limit in Visual Data Exploration : Techniques and Applications},
  number={2821},
  isbn={978-3-540-20059-8},
  publisher={Springer},
  address={Berlin [u.a.]},
  series={Lecture notes in computer science : Lecture notes in artificial intelligence},
  booktitle={KI 2003: Advances in artificial intelligence : 26th Annual German Conference on AI, KI 2003, Hamburg, Germany, September 15-18, 2003},
  pages={37--51},
  editor={Günter, Andreas},
  author={Keim, Daniel A. and Panse, Christian and Schneidewind, Jörn and Sips, Mike and Hao, Ming C. and Dayal, Umeshwar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5615">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>First publ. in: Lecture notes in artificial intelligence, No 2821 (2003), pp. 37-51</dcterms:bibliographicCitation>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5615/1/KI2003.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dcterms:available>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dcterms:title>Pushing the Limit in Visual Data Exploration : Techniques and Applications</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:57:13Z</dc:date>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dc:language>eng</dc:language>
    <dc:creator>Panse, Christian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2003</dcterms:issued>
    <dc:contributor>Panse, Christian</dc:contributor>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:abstract xml:lang="eng">With the rapid growth in size and number of available databases, it is necessary to explore and develop new methods for analysing the huge amounts of data. Mining information and interesting knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Analyzing the huge amount (usually tera-bytes) of data obtained from large databases such as credit card payments, telephone calls, environmental records, census demographics, however, a very difficult task. Visual Exploration and Visual Data Mining techniques apply human visual perception to the exploration of large data sets and have proven to be of high value in exploratory data analysis. Presenting data in an interactive, graphical form often opens new insights, encouraging the formation and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper we give a short overview of visual exploration techniques and present new results obtained from applying PixelBarCharts in sales analysis and internet usage management.</dcterms:abstract>
    <dc:contributor>Sips, Mike</dc:contributor>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5615"/>
    <dc:creator>Sips, Mike</dc:creator>
    <dc:creator>Schneidewind, Jörn</dc:creator>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Schneidewind, Jörn</dc:contributor>
    <dc:creator>Dayal, Umeshwar</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen