Publikation: Lidar assisted Depth Estimation for Thermal Cameras
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Depth- and pose estimation are classical problems in computer vision. Estimating the depth of thermal cameras can be achieved by estimating the camera poses in an independently captured lidar scan. In underground environments and animal behavior, thermal cameras are often used instead of classical RGB cameras. But existing methods for RGB pose estimation do not necessarily need to be effective for thermal cameras, because their working mode and data are different. This is the case for subterranean cave environments. Thermal cameras can be used to capture animal behavior in dark caves. This is what this paper is focused on. This work provides a systematic approach to the alignment of lidar and thermal image information. We use the Ushichka dataset as an exemplary study case. Classical computer vision techniques like Direct Linear Triangulation and Space Carving are are applied to the dataset. We find that the classical methods do not work here as expected and provide a semi-automatic framework, called DMCP, to solve the registration. Finally, different approaches are compared in order to point out in which way a fully automatic registration might be possible.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JANDELEIT, Julian, 2022. Lidar assisted Depth Estimation for Thermal Cameras [Bachelorarbeit]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Jandeleit2022Lidar-57714, year={2022}, title={Lidar assisted Depth Estimation for Thermal Cameras}, address={Konstanz}, school={Universität Konstanz}, author={Jandeleit, Julian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57714"> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57714"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-01T08:23:09Z</dc:date> <dcterms:issued>2022</dcterms:issued> <dc:creator>Jandeleit, Julian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57714/3/Jandeleit_2-vdtn88xxgotj1.pdf"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57714/3/Jandeleit_2-vdtn88xxgotj1.pdf"/> <dc:contributor>Jandeleit, Julian</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">Depth- and pose estimation are classical problems in computer vision. Estimating the depth of thermal cameras can be achieved by estimating the camera poses in an independently captured lidar scan. In underground environments and animal behavior, thermal cameras are often used instead of classical RGB cameras. But existing methods for RGB pose estimation do not necessarily need to be effective for thermal cameras, because their working mode and data are different. This is the case for subterranean cave environments. Thermal cameras can be used to capture animal behavior in dark caves. This is what this paper is focused on. This work provides a systematic approach to the alignment of lidar and thermal image information. We use the Ushichka dataset as an exemplary study case. Classical computer vision techniques like Direct Linear Triangulation and Space Carving are are applied to the dataset. We find that the classical methods do not work here as expected and provide a semi-automatic framework, called DMCP, to solve the registration. Finally, different approaches are compared in order to point out in which way a fully automatic registration might be possible.</dcterms:abstract> <dcterms:title>Lidar assisted Depth Estimation for Thermal Cameras</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-01T08:23:09Z</dcterms:available> </rdf:Description> </rdf:RDF>