Aggregation of Subclassifications : Methods, Tools and Experiments
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2019 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2019, pp. 3124-3131. ISBN 978-1-72812-485-8. Available under: doi: 10.1109/SSCI44817.2019.9002806
Zusammenfassung
Aggregation methods have been studied extensively from a mathematical, theoretical point of view. In this work, however, we focus on a more practical aspect: subclassifications. Given class predictions for several sub-objects of a single instance, we systematically investigate the performance of different aggregation methods. To this end, we simulate data for various data distributions. Thus we ensure that we know the ground truth for the evaluation, which would be impossible for real world data. Our source code is publicly available and can be extended to explore other aggregation methods and other data distributions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
classification, aggregation, sum, product, voting
Konferenz
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 6. Dez. 2019 - 9. Dez. 2019, Xiamen, China
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
DOELL, Christoph, Christian BORGELT, 2019. Aggregation of Subclassifications : Methods, Tools and Experiments. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Xiamen, China, 6. Dez. 2019 - 9. Dez. 2019. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2019, pp. 3124-3131. ISBN 978-1-72812-485-8. Available under: doi: 10.1109/SSCI44817.2019.9002806BibTex
@inproceedings{Doell2019Aggre-53223, year={2019}, doi={10.1109/SSCI44817.2019.9002806}, title={Aggregation of Subclassifications : Methods, Tools and Experiments}, isbn={978-1-72812-485-8}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 IEEE Symposium Series on Computational Intelligence (SSCI)}, pages={3124--3131}, author={Doell, Christoph and Borgelt, Christian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53223"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-22T16:08:09Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53223"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:title>Aggregation of Subclassifications : Methods, Tools and Experiments</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-22T16:08:09Z</dcterms:available> <dc:creator>Doell, Christoph</dc:creator> <dc:creator>Borgelt, Christian</dc:creator> <dcterms:issued>2019</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Borgelt, Christian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Aggregation methods have been studied extensively from a mathematical, theoretical point of view. In this work, however, we focus on a more practical aspect: subclassifications. Given class predictions for several sub-objects of a single instance, we systematically investigate the performance of different aggregation methods. To this end, we simulate data for various data distributions. Thus we ensure that we know the ground truth for the evaluation, which would be impossible for real world data. Our source code is publicly available and can be extended to explore other aggregation methods and other data distributions.</dcterms:abstract> <dc:contributor>Doell, Christoph</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja