Publikation:

Aggregation of Subclassifications : Methods, Tools and Experiments

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2019 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2019, pp. 3124-3131. ISBN 978-1-72812-485-8. Available under: doi: 10.1109/SSCI44817.2019.9002806

Zusammenfassung

Aggregation methods have been studied extensively from a mathematical, theoretical point of view. In this work, however, we focus on a more practical aspect: subclassifications. Given class predictions for several sub-objects of a single instance, we systematically investigate the performance of different aggregation methods. To this end, we simulate data for various data distributions. Thus we ensure that we know the ground truth for the evaluation, which would be impossible for real world data. Our source code is publicly available and can be extended to explore other aggregation methods and other data distributions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

classification, aggregation, sum, product, voting

Konferenz

2019 IEEE Symposium Series on Computational Intelligence (SSCI), 6. Dez. 2019 - 9. Dez. 2019, Xiamen, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DOELL, Christoph, Christian BORGELT, 2019. Aggregation of Subclassifications : Methods, Tools and Experiments. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Xiamen, China, 6. Dez. 2019 - 9. Dez. 2019. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2019, pp. 3124-3131. ISBN 978-1-72812-485-8. Available under: doi: 10.1109/SSCI44817.2019.9002806
BibTex
@inproceedings{Doell2019Aggre-53223,
  year={2019},
  doi={10.1109/SSCI44817.2019.9002806},
  title={Aggregation of Subclassifications : Methods, Tools and Experiments},
  isbn={978-1-72812-485-8},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2019 IEEE Symposium Series on Computational Intelligence (SSCI)},
  pages={3124--3131},
  author={Doell, Christoph and Borgelt, Christian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53223">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-22T16:08:09Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53223"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Aggregation of Subclassifications : Methods, Tools and Experiments</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-03-22T16:08:09Z</dcterms:available>
    <dc:creator>Doell, Christoph</dc:creator>
    <dc:creator>Borgelt, Christian</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Borgelt, Christian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Aggregation methods have been studied extensively from a mathematical, theoretical point of view. In this work, however, we focus on a more practical aspect: subclassifications. Given class predictions for several sub-objects of a single instance, we systematically investigate the performance of different aggregation methods. To this end, we simulate data for various data distributions. Thus we ensure that we know the ground truth for the evaluation, which would be impossible for real world data. Our source code is publicly available and can be extended to explore other aggregation methods and other data distributions.</dcterms:abstract>
    <dc:contributor>Doell, Christoph</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen