Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The success of a company is often dependent on the quality of their Customer Relationship Management (CRM). Knowledge about customer’s concerns and needs can be a huge advantage over competitors but is hard to gain. Large amounts of textual feedback from customers via surveys or emails has to be manually processed, condensed, and lead to decision makers. As this process is quite expensive and error-prone, CRM data is in practice often neglected. We therefore propose an automatic analysis and visualization approach helping analysts in finding interesting patterns. We combine opinion mining with the geospatial location of a review to enable a context-aware analysis of the CRM data. Instead of overwhelming the user by showing the details first, we visually group similar patterns together and aggregate them by applying Self-Organizing Maps in an interactive analysis application. We extend this approach by integrating temporal and seasonal analyses showing these influences on the CRM data. Our technique is able to cope with unstructured customer feedback data and shows location dependencies of significant terms and sentiments. The capabilities of our approach are shown in a case-study using real-world customer feedback data exploring and describing interesting findings.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JANETZKO, Halldor, Dominik JÄCKLE, Tobias SCHRECK, 2014. Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps. In: International Journal on Advances in Intelligent Systems. 2014, 7(1/2), pp. 237-246. ISSN 1942-2679BibTex
@article{Janetzko2014GeoTe-29970, year={2014}, title={Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps}, url={http://www.iariajournals.org/intelligent_systems/intsys_v7_n12_2014_paged.pdf}, number={1/2}, volume={7}, issn={1942-2679}, journal={International Journal on Advances in Intelligent Systems}, pages={237--246}, author={Janetzko, Halldor and Jäckle, Dominik and Schreck, Tobias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29970"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:title>Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps</dcterms:title> <dc:creator>Janetzko, Halldor</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29970"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:39:53Z</dc:date> <dc:contributor>Janetzko, Halldor</dc:contributor> <dcterms:abstract xml:lang="eng">The success of a company is often dependent on the quality of their Customer Relationship Management (CRM). Knowledge about customer’s concerns and needs can be a huge advantage over competitors but is hard to gain. Large amounts of textual feedback from customers via surveys or emails has to be manually processed, condensed, and lead to decision makers. As this process is quite expensive and error-prone, CRM data is in practice often neglected. We therefore propose an automatic analysis and visualization approach helping analysts in finding interesting patterns. We combine opinion mining with the geospatial location of a review to enable a context-aware analysis of the CRM data. Instead of overwhelming the user by showing the details first, we visually group similar patterns together and aggregate them by applying Self-Organizing Maps in an interactive analysis application. We extend this approach by integrating temporal and seasonal analyses showing these influences on the CRM data. Our technique is able to cope with unstructured customer feedback data and shows location dependencies of significant terms and sentiments. The capabilities of our approach are shown in a case-study using real-world customer feedback data exploring and describing interesting findings.</dcterms:abstract> <dc:contributor>Jäckle, Dominik</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2014</dcterms:issued> <dc:creator>Jäckle, Dominik</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:39:53Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>