Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal on Advances in Intelligent Systems. 2014, 7(1/2), pp. 237-246. ISSN 1942-2679
Zusammenfassung

The success of a company is often dependent on the quality of their Customer Relationship Management (CRM). Knowledge about customer’s concerns and needs can be a huge advantage over competitors but is hard to gain. Large amounts of textual feedback from customers via surveys or emails has to be manually processed, condensed, and lead to decision makers. As this process is quite expensive and error-prone, CRM data is in practice often neglected. We therefore propose an automatic analysis and visualization approach helping analysts in finding interesting patterns. We combine opinion mining with the geospatial location of a review to enable a context-aware analysis of the CRM data. Instead of overwhelming the user by showing the details first, we visually group similar patterns together and aggregate them by applying Self-Organizing Maps in an interactive analysis application. We extend this approach by integrating temporal and seasonal analyses showing these influences on the CRM data. Our technique is able to cope with unstructured customer feedback data and shows location dependencies of significant terms and sentiments. The capabilities of our approach are shown in a case-study using real-world customer feedback data exploring and describing interesting findings.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
customer relationship management, review analysis, self-organizing maps, sentiment analysis
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690JANETZKO, Halldor, Dominik JÄCKLE, Tobias SCHRECK, 2014. Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps. In: International Journal on Advances in Intelligent Systems. 2014, 7(1/2), pp. 237-246. ISSN 1942-2679
BibTex
@article{Janetzko2014GeoTe-29970,
  year={2014},
  title={Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps},
  url={http://www.iariajournals.org/intelligent_systems/intsys_v7_n12_2014_paged.pdf},
  number={1/2},
  volume={7},
  issn={1942-2679},
  journal={International Journal on Advances in Intelligent Systems},
  pages={237--246},
  author={Janetzko, Halldor and Jäckle, Dominik and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29970">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Geo-Temporal Visual Analysis of Customer Feedback Data Based on Self-Organizing Sentiment Maps</dcterms:title>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29970"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:39:53Z</dc:date>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dcterms:abstract xml:lang="eng">The success of a company is often dependent on the quality of their Customer Relationship Management (CRM). Knowledge about customer’s concerns and needs can be a huge advantage over competitors but is hard to gain. Large amounts of textual feedback from customers via surveys or emails has to be manually processed, condensed, and lead to decision makers. As this process is quite expensive and error-prone, CRM data is in practice often neglected. We therefore propose an automatic analysis and visualization approach helping analysts in finding interesting patterns. We combine opinion mining with the geospatial location of a review to enable a context-aware analysis of the CRM data. Instead of overwhelming the user by showing the details first, we visually group similar patterns together and aggregate them by applying Self-Organizing Maps in an interactive analysis application. We extend this approach by integrating temporal and seasonal analyses showing these influences on the CRM data. Our technique is able to cope with unstructured customer feedback data and shows location dependencies of significant terms and sentiments. The capabilities of our approach are shown in a case-study using real-world customer feedback data exploring and describing interesting findings.</dcterms:abstract>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:39:53Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2015-02-23
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen