Publikation:

Feature-based visual sentiment analysis of text document streams

Lade...
Vorschaubild

Dateien

Rohrdantz_225914.pdf
Rohrdantz_225914.pdfGröße: 1.82 MBDownloads: 2073

Datum

2012

Autor:innen

Hao, Ming C.
Dayal, Umeshwar
Haug, Lars-Erik

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Intelligent Systems and Technology. 2012, 3(2), pp. 1-25. ISSN 2157-6904. eISSN 2157-6912. Available under: doi: 10.1145/2089094.2089102

Zusammenfassung

This article describes automatic methods and interactive visualizations that are tightly coupled with the goal to enable users to detect interesting portions of text document streams. In this scenario the interestingness is derived from the sentiment, temporal density, and context coherence that comments about features for different targets (e.g., persons, institutions, product attributes, topics, etc.) have. Contributions are made at different stages of the visual analytics pipeline, including novel ways to visualize salient temporal accumulations for further exploration. Moreover, based on the visualization, an automatic algorithm aims to detect and preselect interesting time interval patterns for different features in order to guide analysts. The main target group for the suggested methods are business analysts who want to explore time-stamped customer feedback to detect critical issues. Finally, application case studies on two different datasets and scenarios are conducted and an extensive evaluation is provided for the presented intelligent visual interface for feature-based sentiment exploration over time.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ROHRDANTZ, Christian, Ming C. HAO, Umeshwar DAYAL, Lars-Erik HAUG, Daniel A. KEIM, 2012. Feature-based visual sentiment analysis of text document streams. In: ACM Transactions on Intelligent Systems and Technology. 2012, 3(2), pp. 1-25. ISSN 2157-6904. eISSN 2157-6912. Available under: doi: 10.1145/2089094.2089102
BibTex
@article{Rohrdantz2012Featu-22591,
  year={2012},
  doi={10.1145/2089094.2089102},
  title={Feature-based visual sentiment analysis of text document streams},
  number={2},
  volume={3},
  issn={2157-6904},
  journal={ACM Transactions on Intelligent Systems and Technology},
  pages={1--25},
  author={Rohrdantz, Christian and Hao, Ming C. and Dayal, Umeshwar and Haug, Lars-Erik and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22591">
    <dc:language>eng</dc:language>
    <dc:creator>Haug, Lars-Erik</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T14:21:40Z</dcterms:available>
    <dcterms:bibliographicCitation>ACM transactions on intelligent systems and technology ; 3 (2012), 2. - 26</dcterms:bibliographicCitation>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22591"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Feature-based visual sentiment analysis of text document streams</dcterms:title>
    <dc:contributor>Haug, Lars-Erik</dc:contributor>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22591/2/Rohrdantz_225914.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T14:21:40Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22591/2/Rohrdantz_225914.pdf"/>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">This article describes automatic methods and interactive visualizations that are tightly coupled with the goal to enable users to detect interesting portions of text document streams. In this scenario the interestingness is derived from the sentiment, temporal density, and context coherence that comments about features for different targets (e.g., persons, institutions, product attributes, topics, etc.) have. Contributions are made at different stages of the visual analytics pipeline, including novel ways to visualize salient temporal accumulations for further exploration. Moreover, based on the visualization, an automatic algorithm aims to detect and preselect interesting time interval patterns for different features in order to guide analysts. The main target group for the suggested methods are business analysts who want to explore time-stamped customer feedback to detect critical issues. Finally, application case studies on two different datasets and scenarios are conducted and an extensive evaluation is provided for the presented intelligent visual interface for feature-based sentiment exploration over time.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen