Publikation: Feature-based visual sentiment analysis of text document streams
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This article describes automatic methods and interactive visualizations that are tightly coupled with the goal to enable users to detect interesting portions of text document streams. In this scenario the interestingness is derived from the sentiment, temporal density, and context coherence that comments about features for different targets (e.g., persons, institutions, product attributes, topics, etc.) have. Contributions are made at different stages of the visual analytics pipeline, including novel ways to visualize salient temporal accumulations for further exploration. Moreover, based on the visualization, an automatic algorithm aims to detect and preselect interesting time interval patterns for different features in order to guide analysts. The main target group for the suggested methods are business analysts who want to explore time-stamped customer feedback to detect critical issues. Finally, application case studies on two different datasets and scenarios are conducted and an extensive evaluation is provided for the presented intelligent visual interface for feature-based sentiment exploration over time.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ROHRDANTZ, Christian, Ming C. HAO, Umeshwar DAYAL, Lars-Erik HAUG, Daniel A. KEIM, 2012. Feature-based visual sentiment analysis of text document streams. In: ACM Transactions on Intelligent Systems and Technology. 2012, 3(2), pp. 1-25. ISSN 2157-6904. eISSN 2157-6912. Available under: doi: 10.1145/2089094.2089102BibTex
@article{Rohrdantz2012Featu-22591, year={2012}, doi={10.1145/2089094.2089102}, title={Feature-based visual sentiment analysis of text document streams}, number={2}, volume={3}, issn={2157-6904}, journal={ACM Transactions on Intelligent Systems and Technology}, pages={1--25}, author={Rohrdantz, Christian and Hao, Ming C. and Dayal, Umeshwar and Haug, Lars-Erik and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22591"> <dc:language>eng</dc:language> <dc:creator>Haug, Lars-Erik</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T14:21:40Z</dcterms:available> <dcterms:bibliographicCitation>ACM transactions on intelligent systems and technology ; 3 (2012), 2. - 26</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:contributor>Hao, Ming C.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22591"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Feature-based visual sentiment analysis of text document streams</dcterms:title> <dc:contributor>Haug, Lars-Erik</dc:contributor> <dc:creator>Rohrdantz, Christian</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22591/2/Rohrdantz_225914.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-28T14:21:40Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22591/2/Rohrdantz_225914.pdf"/> <dc:creator>Hao, Ming C.</dc:creator> <dcterms:issued>2012</dcterms:issued> <dc:creator>Dayal, Umeshwar</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">This article describes automatic methods and interactive visualizations that are tightly coupled with the goal to enable users to detect interesting portions of text document streams. In this scenario the interestingness is derived from the sentiment, temporal density, and context coherence that comments about features for different targets (e.g., persons, institutions, product attributes, topics, etc.) have. Contributions are made at different stages of the visual analytics pipeline, including novel ways to visualize salient temporal accumulations for further exploration. Moreover, based on the visualization, an automatic algorithm aims to detect and preselect interesting time interval patterns for different features in order to guide analysts. The main target group for the suggested methods are business analysts who want to explore time-stamped customer feedback to detect critical issues. Finally, application case studies on two different datasets and scenarios are conducted and an extensive evaluation is provided for the presented intelligent visual interface for feature-based sentiment exploration over time.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Rohrdantz, Christian</dc:contributor> </rdf:Description> </rdf:RDF>