Publikation: Secants of minuscule and cominuscule minimal orbits
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Autor:innen
Manivel, Laurent
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Linear Algebra and its Applications. Elsevier. 2015, 481, pp. 288-312. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2015.04.027
Zusammenfassung
We study the geometry of the secant and tangential variety of a cominuscule and minuscule variety, e.g. a Grassmannian or a spinor variety. Using methods inspired by statistics we provide an explicit local isomorphism with a product of an affine space with a variety which is the Zariski closure of the image of a map defined by generalized determinants. In particular, equations of the secant or tangential variety correspond to relations among generalized determinants. We also provide a representation theoretic decomposition of cubics in the ideal of the secant variety of any Grassmannian.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Grassmannian, Minuscule and cominuscule representation, Secant variety, Generalized determinant, Cumulants
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
MANIVEL, Laurent, Mateusz MICHALEK, 2015. Secants of minuscule and cominuscule minimal orbits. In: Linear Algebra and its Applications. Elsevier. 2015, 481, pp. 288-312. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2015.04.027BibTex
@article{Manivel2015Secan-52347, year={2015}, doi={10.1016/j.laa.2015.04.027}, title={Secants of minuscule and cominuscule minimal orbits}, volume={481}, issn={0024-3795}, journal={Linear Algebra and its Applications}, pages={288--312}, author={Manivel, Laurent and Michalek, Mateusz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52347"> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2015</dcterms:issued> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:abstract xml:lang="eng">We study the geometry of the secant and tangential variety of a cominuscule and minuscule variety, e.g. a Grassmannian or a spinor variety. Using methods inspired by statistics we provide an explicit local isomorphism with a product of an affine space with a variety which is the Zariski closure of the image of a map defined by generalized determinants. In particular, equations of the secant or tangential variety correspond to relations among generalized determinants. We also provide a representation theoretic decomposition of cubics in the ideal of the secant variety of any Grassmannian.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:50:55Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Manivel, Laurent</dc:contributor> <dcterms:title>Secants of minuscule and cominuscule minimal orbits</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Michalek, Mateusz</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Manivel, Laurent</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:50:55Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52347"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja