Publikation:

Secants of minuscule and cominuscule minimal orbits

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Manivel, Laurent

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Linear Algebra and its Applications. Elsevier. 2015, 481, pp. 288-312. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2015.04.027

Zusammenfassung

We study the geometry of the secant and tangential variety of a cominuscule and minuscule variety, e.g. a Grassmannian or a spinor variety. Using methods inspired by statistics we provide an explicit local isomorphism with a product of an affine space with a variety which is the Zariski closure of the image of a map defined by generalized determinants. In particular, equations of the secant or tangential variety correspond to relations among generalized determinants. We also provide a representation theoretic decomposition of cubics in the ideal of the secant variety of any Grassmannian.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Grassmannian, Minuscule and cominuscule representation, Secant variety, Generalized determinant, Cumulants

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MANIVEL, Laurent, Mateusz MICHALEK, 2015. Secants of minuscule and cominuscule minimal orbits. In: Linear Algebra and its Applications. Elsevier. 2015, 481, pp. 288-312. ISSN 0024-3795. eISSN 1873-1856. Available under: doi: 10.1016/j.laa.2015.04.027
BibTex
@article{Manivel2015Secan-52347,
  year={2015},
  doi={10.1016/j.laa.2015.04.027},
  title={Secants of minuscule and cominuscule minimal orbits},
  volume={481},
  issn={0024-3795},
  journal={Linear Algebra and its Applications},
  pages={288--312},
  author={Manivel, Laurent and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52347">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2015</dcterms:issued>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:abstract xml:lang="eng">We study the geometry of the secant and tangential variety of a cominuscule and minuscule variety, e.g. a Grassmannian or a spinor variety. Using methods inspired by statistics we provide an explicit local isomorphism with a product of an affine space with a variety which is the Zariski closure of the image of a map defined by generalized determinants. In particular, equations of the secant or tangential variety correspond to relations among generalized determinants. We also provide a representation theoretic decomposition of cubics in the ideal of the secant variety of any Grassmannian.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:50:55Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Manivel, Laurent</dc:contributor>
    <dcterms:title>Secants of minuscule and cominuscule minimal orbits</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Manivel, Laurent</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-11T13:50:55Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52347"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen