Publikation:

Forecasting covariance matrices : a mixed frequency approach

Lade...
Vorschaubild

Dateien

Halbleib_290070.pdf
Halbleib_290070.pdfGröße: 1.07 MBDownloads: 337

Datum

2012

Autor:innen

Voev, Valeri

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this paper we introduce a new method of forecasting covariance matrices of large dimensions by exploiting the theoretical and empirical potential of using mixed-frequency sampled data. The idea is to use high-frequency (intraday) data to model and forecast daily realized volatilities combined with low-frequency (daily) data as input to the correlation model. The main theoretical contribution of the paper is to derive statistical and economic conditions, which ensure that a mixed-frequency forecast has a smaller mean squared forecast error than a similar pure low-frequency or pure high-frequency specification. The conditions are very general and do not rely on distributional assumptions of the forecasting errors or on a particular model specification. Moreover, we provide empirical evidence that, besides overcoming the computational burden of pure high-frequency specifications, the mixed-frequency forecasts are particularly useful in turbulent financial periods, such as the previous financial crisis and always outperforms the pure low-frequency specifications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Multivariate volatility, Volatility forecasting, High-frequency data, Realized variance, Realized covariance

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHIRIAC, Roxana, Valeri VOEV, 2012. Forecasting covariance matrices : a mixed frequency approach
BibTex
@techreport{Chiriac2012Forec-29007,
  year={2012},
  doi={10.2139/ssrn.1740587},
  title={Forecasting covariance matrices : a mixed frequency approach},
  author={Chiriac, Roxana and Voev, Valeri}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29007">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29007/1/Halbleib_290070.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Chiriac, Roxana</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-22T14:09:13Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-22T14:09:13Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29007/1/Halbleib_290070.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29007"/>
    <dc:creator>Voev, Valeri</dc:creator>
    <dcterms:title>Forecasting covariance matrices : a mixed frequency approach</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Chiriac, Roxana</dc:contributor>
    <dc:contributor>Voev, Valeri</dc:contributor>
    <dcterms:abstract xml:lang="eng">In this paper we introduce a new method of forecasting covariance matrices of large dimensions by exploiting the theoretical and empirical potential of using mixed-frequency sampled data. The idea is to use high-frequency (intraday) data to model and forecast daily realized volatilities combined with low-frequency (daily) data as input to the correlation model. The main theoretical contribution of the paper is to derive statistical and economic conditions, which ensure that a mixed-frequency forecast has a smaller mean squared forecast error than a similar pure low-frequency or pure high-frequency specification. The conditions are very general and do not rely on distributional assumptions of the forecasting errors or on a particular model specification. Moreover, we provide empirical evidence that, besides overcoming the computational burden of pure high-frequency specifications, the mixed-frequency forecasts are particularly useful in turbulent financial periods, such as the previous financial crisis and always outperforms the pure low-frequency specifications.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:issued>2012</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen