Publikation: Forecasting covariance matrices : a mixed frequency approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we introduce a new method of forecasting covariance matrices of large dimensions by exploiting the theoretical and empirical potential of using mixed-frequency sampled data. The idea is to use high-frequency (intraday) data to model and forecast daily realized volatilities combined with low-frequency (daily) data as input to the correlation model. The main theoretical contribution of the paper is to derive statistical and economic conditions, which ensure that a mixed-frequency forecast has a smaller mean squared forecast error than a similar pure low-frequency or pure high-frequency specification. The conditions are very general and do not rely on distributional assumptions of the forecasting errors or on a particular model specification. Moreover, we provide empirical evidence that, besides overcoming the computational burden of pure high-frequency specifications, the mixed-frequency forecasts are particularly useful in turbulent financial periods, such as the previous financial crisis and always outperforms the pure low-frequency specifications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHIRIAC, Roxana, Valeri VOEV, 2012. Forecasting covariance matrices : a mixed frequency approachBibTex
@techreport{Chiriac2012Forec-29007, year={2012}, doi={10.2139/ssrn.1740587}, title={Forecasting covariance matrices : a mixed frequency approach}, author={Chiriac, Roxana and Voev, Valeri} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29007"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29007/1/Halbleib_290070.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Chiriac, Roxana</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-22T14:09:13Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-22T14:09:13Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29007/1/Halbleib_290070.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29007"/> <dc:creator>Voev, Valeri</dc:creator> <dcterms:title>Forecasting covariance matrices : a mixed frequency approach</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Chiriac, Roxana</dc:contributor> <dc:contributor>Voev, Valeri</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper we introduce a new method of forecasting covariance matrices of large dimensions by exploiting the theoretical and empirical potential of using mixed-frequency sampled data. The idea is to use high-frequency (intraday) data to model and forecast daily realized volatilities combined with low-frequency (daily) data as input to the correlation model. The main theoretical contribution of the paper is to derive statistical and economic conditions, which ensure that a mixed-frequency forecast has a smaller mean squared forecast error than a similar pure low-frequency or pure high-frequency specification. The conditions are very general and do not rely on distributional assumptions of the forecasting errors or on a particular model specification. Moreover, we provide empirical evidence that, besides overcoming the computational burden of pure high-frequency specifications, the mixed-frequency forecasts are particularly useful in turbulent financial periods, such as the previous financial crisis and always outperforms the pure low-frequency specifications.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:issued>2012</dcterms:issued> </rdf:Description> </rdf:RDF>