Publikation: Forecasting covariance matrices : a mixed frequency approach
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we introduce a new method of forecasting covariance matrices of large dimensions by exploiting the theoretical and empirical potential of using mixed-frequency sampled data. The idea is to use high-frequency (intraday) data to model and forecast daily realized volatilities combined with low-frequency (daily) data as input to the correlation model. The main theoretical contribution of the paper is to derive statistical and economic conditions, which ensure that a mixed-frequency forecast has a smaller mean squared forecast error than a similar pure low-frequency or pure high-frequency specification. The conditions are very general and do not rely on distributional assumptions of the forecasting errors or on a particular model specification. Moreover, we provide empirical evidence that, besides overcoming the computational burden of pure high-frequency specifications, the mixed-frequency forecasts are particularly useful in turbulent financial periods, such as the previous financial crisis and always outperforms the pure low-frequency specifications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CHIRIAC, Roxana, Valeri VOEV, 2012. Forecasting covariance matrices : a mixed frequency approachBibTex
@techreport{Chiriac2012Forec-29007,
year={2012},
doi={10.2139/ssrn.1740587},
title={Forecasting covariance matrices : a mixed frequency approach},
author={Chiriac, Roxana and Voev, Valeri}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29007">
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29007/1/Halbleib_290070.pdf"/>
<dc:rights>terms-of-use</dc:rights>
<dc:creator>Chiriac, Roxana</dc:creator>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
<dc:language>eng</dc:language>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-22T14:09:13Z</dcterms:available>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-09-22T14:09:13Z</dc:date>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29007/1/Halbleib_290070.pdf"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29007"/>
<dc:creator>Voev, Valeri</dc:creator>
<dcterms:title>Forecasting covariance matrices : a mixed frequency approach</dcterms:title>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:contributor>Chiriac, Roxana</dc:contributor>
<dc:contributor>Voev, Valeri</dc:contributor>
<dcterms:abstract xml:lang="eng">In this paper we introduce a new method of forecasting covariance matrices of large dimensions by exploiting the theoretical and empirical potential of using mixed-frequency sampled data. The idea is to use high-frequency (intraday) data to model and forecast daily realized volatilities combined with low-frequency (daily) data as input to the correlation model. The main theoretical contribution of the paper is to derive statistical and economic conditions, which ensure that a mixed-frequency forecast has a smaller mean squared forecast error than a similar pure low-frequency or pure high-frequency specification. The conditions are very general and do not rely on distributional assumptions of the forecasting errors or on a particular model specification. Moreover, we provide empirical evidence that, besides overcoming the computational burden of pure high-frequency specifications, the mixed-frequency forecasts are particularly useful in turbulent financial periods, such as the previous financial crisis and always outperforms the pure low-frequency specifications.</dcterms:abstract>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
<dcterms:issued>2012</dcterms:issued>
</rdf:Description>
</rdf:RDF>