Publikation:

Temporaltracks : visual analytics for exploration of 4D fMRI time-series coactivation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

de Ridder, Michael
Kim, Jinman

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MAO, Xiaoyang, ed., Daniel THALMANN, ed., Marina GAVRILOVA, ed.. Proceedings of the Computer Graphics International Conference on - CGI '17. New York, USA: ACM Press, 2017, 13. ISBN 978-1-4503-5228-4. Available under: doi: 10.1145/3095140.3095153

Zusammenfassung

Functional magnetic resonance imaging (fMRI) is a 4D medical imaging modality that depicts a proxy of neuronal activity in a series of temporal scans. Statistical processing of the modality shows promise in uncovering insights about the functioning of the brain, such as the default mode network, and characteristics of mental disorders. Current statistical processing generally summarises the temporal signals between brain regions into a single data point to represent the ‘coactivation’ of the regions. That is, how similar are their temporal patterns over the scans. However, the potential of such processing is limited by issues of possible data misrepresentation due to uncertainties, e.g. noise in the data. Moreover, it has been shown that brain signals are characterised by brief traces of coactivation, which are lost in the single value representations. To alleviate the issues, alternate statistical processes have been used, however creating effective techniques has proven difficult due to problems, e.g. issues with noise, which often require user input to uncover. Visual analytics, therefore, through its ability to interactively exploit human expertise, presents itself as an interesting approach of benefit to the domain. In this work, we present the conceptual design behind TemporalTracks, our visual analytics system for exploration of 4D fMRI time-series coactivation data, utilising a visual metaphor to effectively present coactivation data for easier understanding. We describe our design with a case study visually analysing Human Connectome Project data, demonstrating that TemporalTracks can uncover temporal events that would otherwise be hidden in standard analysis

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Functional magnetic resonance imaging, temporal data visualization, coactivation analysis

Konferenz

Computer Graphics International Conference CGI '17, 27. Juni 2017 - 30. Juni 2017, Yokohama, Japan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DE RIDDER, Michael, Karsten KLEIN, Jinman KIM, 2017. Temporaltracks : visual analytics for exploration of 4D fMRI time-series coactivation. Computer Graphics International Conference CGI '17. Yokohama, Japan, 27. Juni 2017 - 30. Juni 2017. In: MAO, Xiaoyang, ed., Daniel THALMANN, ed., Marina GAVRILOVA, ed.. Proceedings of the Computer Graphics International Conference on - CGI '17. New York, USA: ACM Press, 2017, 13. ISBN 978-1-4503-5228-4. Available under: doi: 10.1145/3095140.3095153
BibTex
@inproceedings{deRidder2017Tempo-44772,
  year={2017},
  doi={10.1145/3095140.3095153},
  title={Temporaltracks : visual analytics for exploration of 4D fMRI time-series coactivation},
  isbn={978-1-4503-5228-4},
  publisher={ACM Press},
  address={New York, USA},
  booktitle={Proceedings of the Computer Graphics International Conference on   - CGI '17},
  editor={Mao, Xiaoyang and Thalmann, Daniel and Gavrilova, Marina},
  author={de Ridder, Michael and Klein, Karsten and Kim, Jinman},
  note={Article Number: 13}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44772">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-30T11:32:04Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>de Ridder, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-30T11:32:04Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44772"/>
    <dc:contributor>Kim, Jinman</dc:contributor>
    <dc:creator>Kim, Jinman</dc:creator>
    <dc:creator>Klein, Karsten</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Temporaltracks : visual analytics for exploration of 4D fMRI time-series coactivation</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>de Ridder, Michael</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:abstract xml:lang="eng">Functional magnetic resonance imaging (fMRI) is a 4D medical imaging modality that depicts a proxy of neuronal activity in a series of temporal scans. Statistical processing of the modality shows promise in uncovering insights about the functioning of the brain, such as the default mode network, and characteristics of mental disorders. Current statistical processing generally summarises the temporal signals between brain regions into a single data point to represent the ‘coactivation’ of the regions. That is, how similar are their temporal patterns over the scans. However, the potential of such processing is limited by issues of possible data misrepresentation due to uncertainties, e.g. noise in the data. Moreover, it has been shown that brain signals are characterised by brief traces of coactivation, which are lost in the single value representations. To alleviate the issues, alternate statistical processes have been used, however creating effective techniques has proven difficult due to problems, e.g. issues with noise, which often require user input to uncover. Visual analytics, therefore, through its ability to interactively exploit human expertise, presents itself as an interesting approach of benefit to the domain. In this work, we present the conceptual design behind TemporalTracks, our visual analytics system for exploration of 4D fMRI time-series coactivation data, utilising a visual metaphor to effectively present coactivation data for easier understanding. We describe our design with a case study visually analysing Human Connectome Project data, demonstrating that TemporalTracks can uncover temporal events that would otherwise be hidden in standard analysis</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen