Publikation:

Signal extraction from movies of honeybee brain activity : the ImageBee plugin for KNIME

Lade...
Vorschaubild

Dateien

Strauch_217008.pdf
Strauch_217008.pdfGröße: 1.78 MBDownloads: 401

Datum

2013

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

BMC Bioinformatics. 2013, 14(Suppl 18), S4. eISSN 1471-2105. Available under: doi: 10.1186/1471-2105-14-S18-S4

Zusammenfassung

Background



In the antennal lobe, a dedicated olfactory center of the honeybee brain, odours are encoded as activity patterns of coding units, the so-called glomeruli. Optical imaging with calcium-sensitive dyes allows us to record these activity patterns and to gain insight into olfactory information processing in the brain.


Method



We introduce ImageBee, a plugin for the data analysis platform KNIME. ImageBee provides a variety of tools for processing optical imaging data. The main algorithm behind ImageBee is a matrix factorisation approach. Motivated by a data-specific, non-negative mixture model, the algorithm aims to select the generating extreme vectors of a convex cone that contains the data. It approximates the movie matrix by non-negative combinations of the extreme vectors. These correspond to pure glomerular signals that are not mixed with neighbour signals.


Results



Evaluation shows that the proposed algorithm can identify the relevant biological signals on imaging data from the honeybee AL, as well as it can recover implanted source signals from artificial data.


Conclusions



ImageBee enables automated data processing and visualisation for optical imaging data from the insect AL. The modular implementation for KNIME offers a flexible platform for data analysis projects, where modules can be rearranged or added depending on the particular application.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STRAUCH, Martin, Julia REIN, Christian LUTZ, C. Giovanni GALIZIA, 2013. Signal extraction from movies of honeybee brain activity : the ImageBee plugin for KNIME. In: BMC Bioinformatics. 2013, 14(Suppl 18), S4. eISSN 1471-2105. Available under: doi: 10.1186/1471-2105-14-S18-S4
BibTex
@article{Strauch2013Signa-21700,
  year={2013},
  doi={10.1186/1471-2105-14-S18-S4},
  title={Signal extraction from movies of honeybee brain activity : the ImageBee plugin for KNIME},
  number={Suppl 18},
  volume={14},
  journal={BMC Bioinformatics},
  author={Strauch, Martin and Rein, Julia and Lutz, Christian and Galizia, C. Giovanni},
  note={Article Number: S4}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21700">
    <dc:contributor>Strauch, Martin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-08T10:24:08Z</dc:date>
    <dc:creator>Lutz, Christian</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21700/2/Strauch_217008.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/2.0/"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Lutz, Christian</dc:contributor>
    <dcterms:bibliographicCitation>BMC Bioinformatics ; 14 (2013), suppl. 18. - S4</dcterms:bibliographicCitation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-11-08T10:24:08Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21700/2/Strauch_217008.pdf"/>
    <dcterms:abstract xml:lang="eng">Background&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;In the antennal lobe, a dedicated olfactory center of the honeybee brain, odours are encoded as activity patterns of coding units, the so-called glomeruli. Optical imaging with calcium-sensitive dyes allows us to record these activity patterns and to gain insight into olfactory information processing in the brain.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Method&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;We introduce ImageBee, a plugin for the data analysis platform KNIME. ImageBee provides a variety of tools for processing optical imaging data. The main algorithm behind ImageBee is a matrix factorisation approach. Motivated by a data-specific, non-negative mixture model, the algorithm aims to select the generating extreme vectors of a convex cone that contains the data. It approximates the movie matrix by non-negative combinations of the extreme vectors. These correspond to pure glomerular signals that are not mixed with neighbour signals.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Evaluation shows that the proposed algorithm can identify the relevant biological signals on imaging data from the honeybee AL, as well as it can recover implanted source signals from artificial data.&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;Conclusions&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;&lt;br /&gt;ImageBee enables automated data processing and visualisation for optical imaging data from the insect AL. The modular implementation for KNIME offers a flexible platform for data analysis projects, where modules can be rearranged or added depending on the particular application.</dcterms:abstract>
    <dc:creator>Galizia, C. Giovanni</dc:creator>
    <dc:rights>Attribution 2.0 Generic</dc:rights>
    <dcterms:title>Signal extraction from movies of honeybee brain activity : the ImageBee plugin for KNIME</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2013</dcterms:issued>
    <dc:creator>Strauch, Martin</dc:creator>
    <dc:contributor>Rein, Julia</dc:contributor>
    <dc:creator>Rein, Julia</dc:creator>
    <dc:contributor>Galizia, C. Giovanni</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21700"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen