Publikation: Chemical diversity in molecular orbital energy predictions with kernel ridge regression
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Instant machine learning predictions of molecular properties are desirable for materials design, but the predictive power of the methodology is mainly tested on well-known benchmark datasets. Here, we investigate the performance of machine learning with kernel ridge regression (KRR) for the prediction of molecular orbital energies on three large datasets: the standard QM9 small organic molecules set, amino acid and dipeptide conformers, and organic crystal-forming molecules extracted from the Cambridge Structural Database. We focus on the prediction of highest occupied molecular orbital (HOMO) energies, computed at the density-functional level of theory. Two different representations that encode the molecular structure are compared: the Coulomb matrix (CM) and the many-body tensor representation (MBTR). We find that KRR performance depends significantly on the chemistry of the underlying dataset and that the MBTR is superior to the CM, predicting HOMO energies with a mean absolute error as low as 0.09 eV. To demonstrate the power of our machine learning method, we apply our model to structures of 10k previously unseen molecules. We gain instant energy predictions that allow us to identify interesting molecules for future applications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STUKE, Annika, Milica TODOROVIĆ, Matthias RUPP, Christian KUNKEL, Kunal GHOSH, Lauri HIMANEN, Patrick RINKE, 2019. Chemical diversity in molecular orbital energy predictions with kernel ridge regression. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2019, 150(20), 204121. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.5086105BibTex
@article{Stuke2019-05-28Chemi-52141, year={2019}, doi={10.1063/1.5086105}, title={Chemical diversity in molecular orbital energy predictions with kernel ridge regression}, number={20}, volume={150}, issn={0021-9606}, journal={The Journal of Chemical Physics}, author={Stuke, Annika and Todorović, Milica and Rupp, Matthias and Kunkel, Christian and Ghosh, Kunal and Himanen, Lauri and Rinke, Patrick}, note={Article Number: 204121} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52141"> <dc:contributor>Ghosh, Kunal</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Rinke, Patrick</dc:creator> <dc:contributor>Stuke, Annika</dc:contributor> <dc:creator>Stuke, Annika</dc:creator> <dc:creator>Todorović, Milica</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:18:53Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Instant machine learning predictions of molecular properties are desirable for materials design, but the predictive power of the methodology is mainly tested on well-known benchmark datasets. Here, we investigate the performance of machine learning with kernel ridge regression (KRR) for the prediction of molecular orbital energies on three large datasets: the standard QM9 small organic molecules set, amino acid and dipeptide conformers, and organic crystal-forming molecules extracted from the Cambridge Structural Database. We focus on the prediction of highest occupied molecular orbital (HOMO) energies, computed at the density-functional level of theory. Two different representations that encode the molecular structure are compared: the Coulomb matrix (CM) and the many-body tensor representation (MBTR). We find that KRR performance depends significantly on the chemistry of the underlying dataset and that the MBTR is superior to the CM, predicting HOMO energies with a mean absolute error as low as 0.09 eV. To demonstrate the power of our machine learning method, we apply our model to structures of 10k previously unseen molecules. We gain instant energy predictions that allow us to identify interesting molecules for future applications.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Ghosh, Kunal</dc:creator> <dc:contributor>Himanen, Lauri</dc:contributor> <dcterms:issued>2019-05-28</dcterms:issued> <dc:contributor>Rinke, Patrick</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Chemical diversity in molecular orbital energy predictions with kernel ridge regression</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52141"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:18:53Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:creator>Rupp, Matthias</dc:creator> <dc:contributor>Todorović, Milica</dc:contributor> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:creator>Himanen, Lauri</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Kunkel, Christian</dc:contributor> <dc:creator>Kunkel, Christian</dc:creator> </rdf:Description> </rdf:RDF>