Publikation:

Chemical diversity in molecular orbital energy predictions with kernel ridge regression

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Stuke, Annika
Todorović, Milica
Kunkel, Christian
Ghosh, Kunal
Himanen, Lauri
Rinke, Patrick

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Journal of Chemical Physics. American Institute of Physics (AIP). 2019, 150(20), 204121. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.5086105

Zusammenfassung

Instant machine learning predictions of molecular properties are desirable for materials design, but the predictive power of the methodology is mainly tested on well-known benchmark datasets. Here, we investigate the performance of machine learning with kernel ridge regression (KRR) for the prediction of molecular orbital energies on three large datasets: the standard QM9 small organic molecules set, amino acid and dipeptide conformers, and organic crystal-forming molecules extracted from the Cambridge Structural Database. We focus on the prediction of highest occupied molecular orbital (HOMO) energies, computed at the density-functional level of theory. Two different representations that encode the molecular structure are compared: the Coulomb matrix (CM) and the many-body tensor representation (MBTR). We find that KRR performance depends significantly on the chemistry of the underlying dataset and that the MBTR is superior to the CM, predicting HOMO energies with a mean absolute error as low as 0.09 eV. To demonstrate the power of our machine learning method, we apply our model to structures of 10k previously unseen molecules. We gain instant energy predictions that allow us to identify interesting molecules for future applications.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STUKE, Annika, Milica TODOROVIĆ, Matthias RUPP, Christian KUNKEL, Kunal GHOSH, Lauri HIMANEN, Patrick RINKE, 2019. Chemical diversity in molecular orbital energy predictions with kernel ridge regression. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2019, 150(20), 204121. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.5086105
BibTex
@article{Stuke2019-05-28Chemi-52141,
  year={2019},
  doi={10.1063/1.5086105},
  title={Chemical diversity in molecular orbital energy predictions with kernel ridge regression},
  number={20},
  volume={150},
  issn={0021-9606},
  journal={The Journal of Chemical Physics},
  author={Stuke, Annika and Todorović, Milica and Rupp, Matthias and Kunkel, Christian and Ghosh, Kunal and Himanen, Lauri and Rinke, Patrick},
  note={Article Number: 204121}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52141">
    <dc:contributor>Ghosh, Kunal</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Rinke, Patrick</dc:creator>
    <dc:contributor>Stuke, Annika</dc:contributor>
    <dc:creator>Stuke, Annika</dc:creator>
    <dc:creator>Todorović, Milica</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:18:53Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Instant machine learning predictions of molecular properties are desirable for materials design, but the predictive power of the methodology is mainly tested on well-known benchmark datasets. Here, we investigate the performance of machine learning with kernel ridge regression (KRR) for the prediction of molecular orbital energies on three large datasets: the standard QM9 small organic molecules set, amino acid and dipeptide conformers, and organic crystal-forming molecules extracted from the Cambridge Structural Database. We focus on the prediction of highest occupied molecular orbital (HOMO) energies, computed at the density-functional level of theory. Two different representations that encode the molecular structure are compared: the Coulomb matrix (CM) and the many-body tensor representation (MBTR). We find that KRR performance depends significantly on the chemistry of the underlying dataset and that the MBTR is superior to the CM, predicting HOMO energies with a mean absolute error as low as 0.09 eV. To demonstrate the power of our machine learning method, we apply our model to structures of 10k previously unseen molecules. We gain instant energy predictions that allow us to identify interesting molecules for future applications.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Ghosh, Kunal</dc:creator>
    <dc:contributor>Himanen, Lauri</dc:contributor>
    <dcterms:issued>2019-05-28</dcterms:issued>
    <dc:contributor>Rinke, Patrick</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Chemical diversity in molecular orbital energy predictions with kernel ridge regression</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52141"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:18:53Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>Todorović, Milica</dc:contributor>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:creator>Himanen, Lauri</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Kunkel, Christian</dc:contributor>
    <dc:creator>Kunkel, Christian</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen