Publikation:

Heterogeneous subgraph features for information networks

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Costa, Diego
Chen, Kai
Greulich, Jan
Geiß, Johanna
Wiesberg, Stefan
Gertz, Michael

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ARORA, Akhil, ed., Arnab BHATTACHARYA, ed., George FLETCHER, ed. and others. GRADES-NDA '18 : Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). New York, NY: ACM, 2018, 7. ISBN 978-1-4503-5695-4. Available under: doi: 10.1145/3210259.3210266

Zusammenfassung

Networks play an increasingly important role in modelling real-world systems due to their utility in representing complex connections. For predictive analyses, the engineering of node features in such networks is of fundamental importance to machine learning applications, where the lack of external information often introduces the need for features that are based purely on network topology. Existing feature extraction approaches have so far focused primarily on networks with just one type of node and thereby disregarded the information contained in the topology of heterogeneous networks, or used domain specific approaches that incorporate node labels based on external knowledge. Here, we generalize the notion of heterogeneity and present an approach for the efficient extraction and representation of heterogeneous subgraph features. We evaluate their performance for rank- and label-prediction tasks and explore the implications of feature importance for prominent subgraphs. Our experiments reveal that heterogeneous subgraph features reach the predictive power of manually engineered features that incorporate domain knowledge. Furthermore, we find that heterogeneous subgraph features outperform state-of-the-art neural node embeddings in both tasks and across all data sets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Heterogeneous networks; information networks; node features; feature engineering; graph encodings

Konferenz

GRADES-NDA’18 : 1st Joint InternationalWorkshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), 10. Juni 2018 - 15. Juni 2018, Houston, Texas, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPITZ, Andreas, Diego COSTA, Kai CHEN, Jan GREULICH, Johanna GEISS, Stefan WIESBERG, Michael GERTZ, 2018. Heterogeneous subgraph features for information networks. GRADES-NDA’18 : 1st Joint InternationalWorkshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). Houston, Texas, USA, 10. Juni 2018 - 15. Juni 2018. In: ARORA, Akhil, ed., Arnab BHATTACHARYA, ed., George FLETCHER, ed. and others. GRADES-NDA '18 : Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). New York, NY: ACM, 2018, 7. ISBN 978-1-4503-5695-4. Available under: doi: 10.1145/3210259.3210266
BibTex
@inproceedings{Spitz2018Heter-55683,
  year={2018},
  doi={10.1145/3210259.3210266},
  title={Heterogeneous subgraph features for information networks},
  isbn={978-1-4503-5695-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={GRADES-NDA '18 : Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)},
  editor={Arora, Akhil and Bhattacharya, Arnab and Fletcher, George},
  author={Spitz, Andreas and Costa, Diego and Chen, Kai and Greulich, Jan and Geiß, Johanna and Wiesberg, Stefan and Gertz, Michael},
  note={Article Number: 7}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55683">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gertz, Michael</dc:contributor>
    <dc:creator>Gertz, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Greulich, Jan</dc:contributor>
    <dc:creator>Geiß, Johanna</dc:creator>
    <dc:contributor>Chen, Kai</dc:contributor>
    <dc:contributor>Wiesberg, Stefan</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:30:34Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:30:34Z</dc:date>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Chen, Kai</dc:creator>
    <dc:contributor>Costa, Diego</dc:contributor>
    <dc:creator>Wiesberg, Stefan</dc:creator>
    <dc:creator>Costa, Diego</dc:creator>
    <dc:creator>Greulich, Jan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Geiß, Johanna</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55683"/>
    <dcterms:abstract xml:lang="eng">Networks play an increasingly important role in modelling real-world systems due to their utility in representing complex connections. For predictive analyses, the engineering of node features in such networks is of fundamental importance to machine learning applications, where the lack of external information often introduces the need for features that are based purely on network topology. Existing feature extraction approaches have so far focused primarily on networks with just one type of node and thereby disregarded the information contained in the topology of heterogeneous networks, or used domain specific approaches that incorporate node labels based on external knowledge. Here, we generalize the notion of heterogeneity and present an approach for the efficient extraction and representation of heterogeneous subgraph features. We evaluate their performance for rank- and label-prediction tasks and explore the implications of feature importance for prominent subgraphs. Our experiments reveal that heterogeneous subgraph features reach the predictive power of manually engineered features that incorporate domain knowledge. Furthermore, we find that heterogeneous subgraph features outperform state-of-the-art neural node embeddings in both tasks and across all data sets.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Heterogeneous subgraph features for information networks</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen