Publikation: Heterogeneous subgraph features for information networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Networks play an increasingly important role in modelling real-world systems due to their utility in representing complex connections. For predictive analyses, the engineering of node features in such networks is of fundamental importance to machine learning applications, where the lack of external information often introduces the need for features that are based purely on network topology. Existing feature extraction approaches have so far focused primarily on networks with just one type of node and thereby disregarded the information contained in the topology of heterogeneous networks, or used domain specific approaches that incorporate node labels based on external knowledge. Here, we generalize the notion of heterogeneity and present an approach for the efficient extraction and representation of heterogeneous subgraph features. We evaluate their performance for rank- and label-prediction tasks and explore the implications of feature importance for prominent subgraphs. Our experiments reveal that heterogeneous subgraph features reach the predictive power of manually engineered features that incorporate domain knowledge. Furthermore, we find that heterogeneous subgraph features outperform state-of-the-art neural node embeddings in both tasks and across all data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPITZ, Andreas, Diego COSTA, Kai CHEN, Jan GREULICH, Johanna GEISS, Stefan WIESBERG, Michael GERTZ, 2018. Heterogeneous subgraph features for information networks. GRADES-NDA’18 : 1st Joint InternationalWorkshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). Houston, Texas, USA, 10. Juni 2018 - 15. Juni 2018. In: ARORA, Akhil, ed., Arnab BHATTACHARYA, ed., George FLETCHER, ed. and others. GRADES-NDA '18 : Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA). New York, NY: ACM, 2018, 7. ISBN 978-1-4503-5695-4. Available under: doi: 10.1145/3210259.3210266BibTex
@inproceedings{Spitz2018Heter-55683, year={2018}, doi={10.1145/3210259.3210266}, title={Heterogeneous subgraph features for information networks}, isbn={978-1-4503-5695-4}, publisher={ACM}, address={New York, NY}, booktitle={GRADES-NDA '18 : Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)}, editor={Arora, Akhil and Bhattacharya, Arnab and Fletcher, George}, author={Spitz, Andreas and Costa, Diego and Chen, Kai and Greulich, Jan and Geiß, Johanna and Wiesberg, Stefan and Gertz, Michael}, note={Article Number: 7} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55683"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gertz, Michael</dc:contributor> <dc:creator>Gertz, Michael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Greulich, Jan</dc:contributor> <dc:creator>Geiß, Johanna</dc:creator> <dc:contributor>Chen, Kai</dc:contributor> <dc:contributor>Wiesberg, Stefan</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:30:34Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-26T14:30:34Z</dc:date> <dc:creator>Spitz, Andreas</dc:creator> <dc:language>eng</dc:language> <dc:creator>Chen, Kai</dc:creator> <dc:contributor>Costa, Diego</dc:contributor> <dc:creator>Wiesberg, Stefan</dc:creator> <dc:creator>Costa, Diego</dc:creator> <dc:creator>Greulich, Jan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Geiß, Johanna</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55683"/> <dcterms:abstract xml:lang="eng">Networks play an increasingly important role in modelling real-world systems due to their utility in representing complex connections. For predictive analyses, the engineering of node features in such networks is of fundamental importance to machine learning applications, where the lack of external information often introduces the need for features that are based purely on network topology. Existing feature extraction approaches have so far focused primarily on networks with just one type of node and thereby disregarded the information contained in the topology of heterogeneous networks, or used domain specific approaches that incorporate node labels based on external knowledge. Here, we generalize the notion of heterogeneity and present an approach for the efficient extraction and representation of heterogeneous subgraph features. We evaluate their performance for rank- and label-prediction tasks and explore the implications of feature importance for prominent subgraphs. Our experiments reveal that heterogeneous subgraph features reach the predictive power of manually engineered features that incorporate domain knowledge. Furthermore, we find that heterogeneous subgraph features outperform state-of-the-art neural node embeddings in both tasks and across all data sets.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Heterogeneous subgraph features for information networks</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Spitz, Andreas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>