Publikation:

Uncertainty-Aware Principal Component Analysis

Lade...
Vorschaubild

Dateien

Goertler_2-uopu9xoet8lq9.pdf
Goertler_2-uopu9xoet8lq9.pdfGröße: 2.67 MBDownloads: 200

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 825041

Projekt

SmartDataLake - Sustainable Data Lakes for Extreme-Scale Analytics
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), S. 822-831. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2019.2934812

Zusammenfassung

We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA . In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
Replication Data for: Uncertainty-Aware Principal Component Analysis
(VV1, 2022) Görtler, Jochen; Spinner, Thilo; Weiskopf, Daniel; Deussen, Oliver

Zitieren

ISO 690GÖRTLER, Jochen, Thilo SPINNER, Dirk STREEB, Daniel WEISKOPF, Oliver DEUSSEN, 2020. Uncertainty-Aware Principal Component Analysis. In: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), S. 822-831. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2019.2934812
BibTex
@article{Gortler2020-01Uncer-47963,
  title={Uncertainty-Aware Principal Component Analysis},
  year={2020},
  doi={10.1109/TVCG.2019.2934812},
  number={1},
  volume={26},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={822--831},
  author={Görtler, Jochen and Spinner, Thilo and Streeb, Dirk and Weiskopf, Daniel and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47963">
    <dc:creator>Spinner, Thilo</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47963"/>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47963/1/Goertler_2-uopu9xoet8lq9.pdf"/>
    <dcterms:title>Uncertainty-Aware Principal Component Analysis</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47963/1/Goertler_2-uopu9xoet8lq9.pdf"/>
    <dcterms:abstract xml:lang="eng">We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA . In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach.</dcterms:abstract>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-10T13:32:05Z</dcterms:available>
    <dcterms:issued>2020-01</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Streeb, Dirk</dc:contributor>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dc:creator>Streeb, Dirk</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-12-10T13:32:05Z</dc:date>
    <dc:contributor>Spinner, Thilo</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen