Publikation: Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this diploma thesis an optimal control problem governed by a semilinear heat equation is considered. The problem is formulated as a reduced problem by including the semilinear heat equation in the formulation of the cost functional. This nonlinear reduced problem is numerically solved by a globalized inexact Newton method. The inexact Newton steps are computed with a conjugate gradient (CG) algorithm. In a first approach, an Armijo backtracking strategy is chosen for globalization of the Newton-CG method. A classical Finite Element Galerkin technique is used for spatial discretization. To reduce the computational effort a model reduction approach based on proper orthogonal decomposition (POD) is applied. A control which is utilized to set up the POD basis has to be chosen at the beginning and the reduced-order models (ROMs) are fixed during optimization. If the required control is chosen badly, few POD basis functions do not suffice to obtain good POD suboptimal controls. To overcome this problem the reduced-order Newton-CG strategy is embedded in a trust region framework, where the POD basis and hence the ROMs are improved successively by utilizing the updated control values. The proposed methods are tested by numerical examples. In particular, the adaptation of the POD basis when applying the trust region POD strategy is analyzed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ROGG, Sabrina, 2014. Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Rogg2014Trust-29194, year={2014}, title={Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation}, address={Konstanz}, school={Universität Konstanz}, author={Rogg, Sabrina}, note={Diplomarbeit} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29194"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29194/3/Rogg_0-255879.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Rogg, Sabrina</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29194"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In this diploma thesis an optimal control problem governed by a semilinear heat equation is considered. The problem is formulated as a reduced problem by including the semilinear heat equation in the formulation of the cost functional. This nonlinear reduced problem is numerically solved by a globalized inexact Newton method. The inexact Newton steps are computed with a conjugate gradient (CG) algorithm. In a first approach, an Armijo backtracking strategy is chosen for globalization of the Newton-CG method. A classical Finite Element Galerkin technique is used for spatial discretization. To reduce the computational effort a model reduction approach based on proper orthogonal decomposition (POD) is applied. A control which is utilized to set up the POD basis has to be chosen at the beginning and the reduced-order models (ROMs) are fixed during optimization. If the required control is chosen badly, few POD basis functions do not suffice to obtain good POD suboptimal controls. To overcome this problem the reduced-order Newton-CG strategy is embedded in a trust region framework, where the POD basis and hence the ROMs are improved successively by utilizing the updated control values. The proposed methods are tested by numerical examples. In particular, the adaptation of the POD basis when applying the trust region POD strategy is analyzed.</dcterms:abstract> <dcterms:issued>2014</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29194/3/Rogg_0-255879.pdf"/> <dc:creator>Rogg, Sabrina</dc:creator> <dcterms:title>Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-29T10:28:39Z</dc:date> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-29T10:28:39Z</dcterms:available> </rdf:Description> </rdf:RDF>