Publikation:

Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation

Lade...
Vorschaubild

Dateien

Rogg_0-255879.pdf
Rogg_0-255879.pdfGröße: 12.4 MBDownloads: 818

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this diploma thesis an optimal control problem governed by a semilinear heat equation is considered. The problem is formulated as a reduced problem by including the semilinear heat equation in the formulation of the cost functional. This nonlinear reduced problem is numerically solved by a globalized inexact Newton method. The inexact Newton steps are computed with a conjugate gradient (CG) algorithm. In a first approach, an Armijo backtracking strategy is chosen for globalization of the Newton-CG method. A classical Finite Element Galerkin technique is used for spatial discretization. To reduce the computational effort a model reduction approach based on proper orthogonal decomposition (POD) is applied. A control which is utilized to set up the POD basis has to be chosen at the beginning and the reduced-order models (ROMs) are fixed during optimization. If the required control is chosen badly, few POD basis functions do not suffice to obtain good POD suboptimal controls. To overcome this problem the reduced-order Newton-CG strategy is embedded in a trust region framework, where the POD basis and hence the ROMs are improved successively by utilizing the updated control values. The proposed methods are tested by numerical examples. In particular, the adaptation of the POD basis when applying the trust region POD strategy is analyzed.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Optimal control, semilinear partial differential equations, globalized inexact Newton methods, model reduction, proper orthogonal decomposition, trust region methods

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ROGG, Sabrina, 2014. Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Rogg2014Trust-29194,
  year={2014},
  title={Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation},
  address={Konstanz},
  school={Universität Konstanz},
  author={Rogg, Sabrina},
  note={Diplomarbeit}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29194">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29194/3/Rogg_0-255879.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Rogg, Sabrina</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29194"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In this diploma thesis an optimal control problem governed by a semilinear heat equation is considered. The problem is formulated as a reduced problem by including the semilinear heat equation in the formulation of the cost functional. This nonlinear reduced problem is numerically solved by a globalized inexact Newton method. The inexact Newton steps are computed with a conjugate gradient (CG) algorithm. In a first approach, an Armijo backtracking strategy is chosen for globalization of the Newton-CG method. A classical Finite Element Galerkin technique is used for spatial discretization. To reduce the computational effort a model reduction approach based on proper orthogonal decomposition (POD) is applied. A control which is utilized to set up the POD basis has to be chosen at the beginning and the reduced-order models (ROMs) are fixed during optimization. If the required control is chosen badly, few POD basis functions do not suffice to obtain good POD suboptimal controls. To overcome this problem the reduced-order Newton-CG strategy is embedded in a trust region framework, where the POD basis and hence the ROMs are improved successively by utilizing the updated control values. The proposed methods are tested by numerical examples. In particular, the adaptation of the POD basis when applying the trust region POD strategy is analyzed.</dcterms:abstract>
    <dcterms:issued>2014</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29194/3/Rogg_0-255879.pdf"/>
    <dc:creator>Rogg, Sabrina</dc:creator>
    <dcterms:title>Trust Region POD for Optimal Boundary Control of a Semilinear Heat Equation</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-29T10:28:39Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-10-29T10:28:39Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2014
Finanzierungsart

Kommentar zur Publikation

Diplomarbeit
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen