Publikation: Pivot Selection Techniques for Proximity Searching in Metric Spaces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
With few exceptions, proximity search algorithms in metric spaces based on the use of pivots select them at random among the objects of the metric space. However, it is well known that the way in which the pivots are selected can drastically affect the performance of the algorithm. Between two sets of pivots of the same size, better chosen pivots can largely reduce the search time. Alternatively, a better chosen small set of pivots (requiring much less space) can yield the same efficiency as a larger, randomly chosen, set. We propose an efficiency measure to compare two pivot sets, combined with an optimization technique that allows us to select good sets of pivots. We obtain abundant empirical evidence showing that our technique is effective, and it is the first that we are aware of in producing consistently good results in a wide variety of cases and in being based on a formal theory. We also show that good pivots are outliers, but that selecting outliers does not ensure that good pivots are selected.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUSTOS CÁRDENAS, Benjamin Eugenio, Gonzalo NAVARRO, Edgar CHÁVEZ, 2003. Pivot Selection Techniques for Proximity Searching in Metric Spaces. In: Pattern recognition letters. 2003, 24(14), pp. 2357-2366. Available under: doi: 10.1016/S0167-8655(03)00065-5BibTex
@article{BustosCardenas2003Pivot-5525, year={2003}, doi={10.1016/S0167-8655(03)00065-5}, title={Pivot Selection Techniques for Proximity Searching in Metric Spaces}, number={14}, volume={24}, journal={Pattern recognition letters}, pages={2357--2366}, author={Bustos Cárdenas, Benjamin Eugenio and Navarro, Gonzalo and Chávez, Edgar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5525"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:13Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5525/1/prl03.pdf"/> <dc:contributor>Bustos Cárdenas, Benjamin Eugenio</dc:contributor> <dc:creator>Navarro, Gonzalo</dc:creator> <dcterms:issued>2003</dcterms:issued> <dcterms:abstract xml:lang="eng">With few exceptions, proximity search algorithms in metric spaces based on the use of pivots select them at random among the objects of the metric space. However, it is well known that the way in which the pivots are selected can drastically affect the performance of the algorithm. Between two sets of pivots of the same size, better chosen pivots can largely reduce the search time. Alternatively, a better chosen small set of pivots (requiring much less space) can yield the same efficiency as a larger, randomly chosen, set. We propose an efficiency measure to compare two pivot sets, combined with an optimization technique that allows us to select good sets of pivots. We obtain abundant empirical evidence showing that our technique is effective, and it is the first that we are aware of in producing consistently good results in a wide variety of cases and in being based on a formal theory. We also show that good pivots are outliers, but that selecting outliers does not ensure that good pivots are selected.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Bustos Cárdenas, Benjamin Eugenio</dc:creator> <dcterms:title>Pivot Selection Techniques for Proximity Searching in Metric Spaces</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Chávez, Edgar</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5525/1/prl03.pdf"/> <dcterms:bibliographicCitation>First publ. in: Pattern recognition letters 24 (2003), 14, pp. 2357-2366</dcterms:bibliographicCitation> <dc:format>application/pdf</dc:format> <dc:contributor>Navarro, Gonzalo</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Chávez, Edgar</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:13Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5525"/> </rdf:Description> </rdf:RDF>