Publikation: Nonplanar nanoselective area growth of InGaAs/InP
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this study, we have investigated metal-organic vapor phase epitaxial nano-patterned selective area growth of InGaAs/InP on non-planar (001) InP surfaces. Due to high etching resistance and the small molecular size of negative tone electron beam HSQ resist, the protection mask formed in HSQ has small feature sizes in ten nanometers scale and allow realization of in-situ etching. As was observed in the SAG regime, in-situ etching of InP by carbon tetrabromide leads to formation of self-limited structures. By altering etching time, the groove shape can be changed from a triangular trench to a trapeze. Another appealing aspect of in situ etching is that the shape of InGaAs can be tuned from a crescent to a triangular or a line by varying growth parameters. Quantum well wires can be fabricated by growing directly in the bottom of V-shaped groove. In addition, changes of mask orientations lead to anistropic or isotropic character of etching. The investigated technique of nano-patterned selective area growth allows obtaining different profiles of structures and different quantum structures such as quantum well or wires in the same growth run. To investigate the shape and crystalline quality of the active material, the cross-sectional geometry was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The optical properties were carried out at room temperature using micro-photoluminescence setup. The results showed different deposition rates for openings oriented along [0-11] and [0-1-1] directions with higher rate along [0-1-1]. The fabricated active material was incorporated into photonic crystal waveguides.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUZNETSOVA, Nadezda, Pierre COLMAN, Elizaveta SEMENOVA, Shima KADKHODAZADEH, Natalya V. KRYZHANOVSKAYA, S. EK, Weiqi XUE, Martin SCHUBERT, Alexey E. ZHUKOV, Kresten YVIND, 2014. Nonplanar nanoselective area growth of InGaAs/InP. SPIE OPTO. San Francisco, California, United States, 1. Feb. 2014 - 6. Feb. 2014. In: HUFFAKER, Diana L., ed., Frank SZMULOWICZ, ed., Holger EISELE, ed.. Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI. Bellingham: SPIE, 2014, 899608. SPIE Proceedings. 8996. ISSN 0277-786X. ISBN 978-0-8194-9909-7. Available under: doi: 10.1117/12.2037902BibTex
@inproceedings{Kuznetsova2014Nonpl-42700, year={2014}, doi={10.1117/12.2037902}, title={Nonplanar nanoselective area growth of InGaAs/InP}, number={8996}, isbn={978-0-8194-9909-7}, issn={0277-786X}, publisher={SPIE}, address={Bellingham}, series={SPIE Proceedings}, booktitle={Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI}, editor={Huffaker, Diana L. and Szmulowicz, Frank and Eisele, Holger}, author={Kuznetsova, Nadezda and Colman, Pierre and Semenova, Elizaveta and Kadkhodazadeh, Shima and Kryzhanovskaya, Natalya V. and Ek, S. and Xue, Weiqi and Schubert, Martin and Zhukov, Alexey E. and Yvind, Kresten}, note={Article Number: 899608} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42700"> <dc:creator>Kadkhodazadeh, Shima</dc:creator> <dc:creator>Yvind, Kresten</dc:creator> <dc:contributor>Colman, Pierre</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42700"/> <dc:contributor>Kuznetsova, Nadezda</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Xue, Weiqi</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-27T07:12:53Z</dcterms:available> <dc:contributor>Semenova, Elizaveta</dc:contributor> <dcterms:title>Nonplanar nanoselective area growth of InGaAs/InP</dcterms:title> <dc:creator>Kuznetsova, Nadezda</dc:creator> <dc:contributor>Kadkhodazadeh, Shima</dc:contributor> <dc:contributor>Kryzhanovskaya, Natalya V.</dc:contributor> <dc:creator>Ek, S.</dc:creator> <dcterms:abstract xml:lang="eng">In this study, we have investigated metal-organic vapor phase epitaxial nano-patterned selective area growth of InGaAs/InP on non-planar (001) InP surfaces. Due to high etching resistance and the small molecular size of negative tone electron beam HSQ resist, the protection mask formed in HSQ has small feature sizes in ten nanometers scale and allow realization of in-situ etching. As was observed in the SAG regime, in-situ etching of InP by carbon tetrabromide leads to formation of self-limited structures. By altering etching time, the groove shape can be changed from a triangular trench to a trapeze. Another appealing aspect of in situ etching is that the shape of InGaAs can be tuned from a crescent to a triangular or a line by varying growth parameters. Quantum well wires can be fabricated by growing directly in the bottom of V-shaped groove. In addition, changes of mask orientations lead to anistropic or isotropic character of etching. The investigated technique of nano-patterned selective area growth allows obtaining different profiles of structures and different quantum structures such as quantum well or wires in the same growth run. To investigate the shape and crystalline quality of the active material, the cross-sectional geometry was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The optical properties were carried out at room temperature using micro-photoluminescence setup. The results showed different deposition rates for openings oriented along [0-11] and [0-1-1] directions with higher rate along [0-1-1]. The fabricated active material was incorporated into photonic crystal waveguides.</dcterms:abstract> <dc:contributor>Schubert, Martin</dc:contributor> <dc:creator>Zhukov, Alexey E.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Semenova, Elizaveta</dc:creator> <dc:creator>Xue, Weiqi</dc:creator> <dc:creator>Schubert, Martin</dc:creator> <dc:creator>Kryzhanovskaya, Natalya V.</dc:creator> <dc:creator>Colman, Pierre</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ek, S.</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-27T07:12:53Z</dc:date> <dc:language>eng</dc:language> <dc:contributor>Zhukov, Alexey E.</dc:contributor> <dc:contributor>Yvind, Kresten</dc:contributor> </rdf:Description> </rdf:RDF>