Publikation:

Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-sized Subdomains : Part II

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Gander, Martin J.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Numerical Analysis. 2018, 56(3), pp. 1498-1524. ISSN 0036-1429. eISSN 1095-7170. Available under: doi: 10.1137/17M1115885

Zusammenfassung

According to classical theory, one level Schwarz methods applied to elliptic problems are not scalable in general [A. Toselli and O. Widlund, Springer Ser. Comput. Math., 34, Springer, New York, 2005]. This means that their convergence deteriorates when the number of subdomains increases. In contrast to this classical result, it was observed numerically in [E. Cancès, Y. Maday, and B. Stamm, J. Chem. Phys., 139 (2013), 054111; F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys., 141 (2014), 184108; F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, J. Chem. Theory Comput., 9 (2013), pp. 3637--3648] that in some cases the convergence of the one level Schwarz method does not depend on the number of subdomains. This happens for molecular problems where the domain of definition of the linear elliptic partial differential equation is the union of spherical van der Waal's cavities centered at the atomic position of the molecule. In this case, the computations can naturally be performed using Schwarz methods, where each atom of the molecule corresponds to a subdomain, see [E. Cancès, Y. Maday, and B. Stamm, J. Chem. Phys., 139 (2013), 054111; F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys., 141 (2014), 184108; F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, J. Chem. Theory Comput., 9 (2013), pp. 3637--3648]. We prove here that the scalability results presented in [G. Ciaramella and M. J. Gander, SIAM J. Numer. Anal., 55 (2017), pp. 1330--1356] for a simplified rectangular geometry also hold for realistic two-dimensional chains of circular subdomains. To do so, we first prove some characterization results for the solution of the Laplace equation in the unit disk. Then, using these combined with the maximum principle for harmonic functions, we obtain our convergence theorems for general configurations of molecules. Our convergence results reveal a further very unusual property of the Schwarz method in these simulations: starting from a certain critical overlap size, increasing the overlap further actually decreases the performance of the Schwarz method, in strong contrast to classical Schwarz theory.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CIARAMELLA, Gabriele, Martin J. GANDER, 2018. Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-sized Subdomains : Part II. In: SIAM Journal on Numerical Analysis. 2018, 56(3), pp. 1498-1524. ISSN 0036-1429. eISSN 1095-7170. Available under: doi: 10.1137/17M1115885
BibTex
@article{Ciaramella2018-05-31Analy-42882,
  year={2018},
  doi={10.1137/17M1115885},
  title={Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-sized Subdomains : Part II},
  number={3},
  volume={56},
  issn={0036-1429},
  journal={SIAM Journal on Numerical Analysis},
  pages={1498--1524},
  author={Ciaramella, Gabriele and Gander, Martin J.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42882">
    <dcterms:issued>2018-05-31</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Gander, Martin J.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42882"/>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Gander, Martin J.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-19T07:34:41Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">According to classical theory, one level Schwarz methods applied to elliptic problems are not scalable in general [A. Toselli and O. Widlund, Springer Ser. Comput. Math., 34, Springer, New York, 2005]. This means that their convergence deteriorates when the number of subdomains increases. In contrast to this classical result, it was observed numerically in [E. Cancès, Y. Maday, and B. Stamm, J. Chem. Phys., 139 (2013), 054111; F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys., 141 (2014), 184108; F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, J. Chem. Theory Comput., 9 (2013), pp. 3637--3648] that in some cases the convergence of the one level Schwarz method does not depend on the number of subdomains. This happens for molecular problems where the domain of definition of the linear elliptic partial differential equation is the union of spherical van der Waal's cavities centered at the atomic position of the molecule. In this case, the computations can naturally be performed using Schwarz methods, where each atom of the molecule corresponds to a subdomain, see [E. Cancès, Y. Maday, and B. Stamm, J. Chem. Phys., 139 (2013), 054111; F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys., 141 (2014), 184108; F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, J. Chem. Theory Comput., 9 (2013), pp. 3637--3648]. We prove here that the scalability results presented in [G. Ciaramella and M. J. Gander, SIAM J. Numer. Anal., 55 (2017), pp. 1330--1356] for a simplified rectangular geometry also hold for realistic two-dimensional chains of circular subdomains. To do so, we first prove some characterization results for the solution of the Laplace equation in the unit disk. Then, using these combined with the maximum principle for harmonic functions, we obtain our convergence theorems for general configurations of molecules. Our convergence results reveal a further very unusual property of the Schwarz method in these simulations: starting from a certain critical overlap size, increasing the overlap further actually decreases the performance of the Schwarz method, in strong contrast to classical Schwarz theory.</dcterms:abstract>
    <dcterms:title>Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-sized Subdomains : Part II</dcterms:title>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-19T07:34:41Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen