SICOP : identifying significant co-interaction patterns

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Zweig, Katharina A.
Horvát, Emőke-Ágnes
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Bioinformatics. Oxford University Press. 2013, 29(19), pp. 2503-2504. ISSN 1367-4803. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btt408
Zusammenfassung

Interactions between various types of molecules that regulate crucial cellular processes are extensively investigated by high-throughput experiments and require dedicated computational methods for the analysis of the resulting data. In many cases, these data can be represented as a bipartite graph because it describes interactions between elements of two different types such as the influence of different experimental conditions on cellular variables or the direct interaction between receptors and their activators/inhibitors. One of the major challenges in the analysis of such noisy datasets is the statistical evaluation of the relationship between any two elements of the same type. Here, we present SICOP (significant co-interaction patterns), an implementation of a method that provides such an evaluation based on the number of their common interaction partners, their so-called co-interaction. This general network analytic method, proved successful in diverse fields, provides a framework for assessing the significance of this relationship by comparison with the expected co-interaction in a suitable null model of the same bipartite graph. SICOP takes into consideration up to two distinct types of interactions such as up- or downregulation. The tool is written in Java and accepts several common input formats and supports different output formats, facilitating further analysis and visualization. Its key features include a user-friendly interface, easy installation and platform independence.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SPITZ, Andreas, Katharina A. ZWEIG, Emőke-Ágnes HORVÁT, 2013. SICOP : identifying significant co-interaction patterns. In: Bioinformatics. Oxford University Press. 2013, 29(19), pp. 2503-2504. ISSN 1367-4803. eISSN 1367-4811. Available under: doi: 10.1093/bioinformatics/btt408
BibTex
@article{Spitz2013-10-01SICOP-55777,
  year={2013},
  doi={10.1093/bioinformatics/btt408},
  title={SICOP : identifying significant co-interaction patterns},
  number={19},
  volume={29},
  issn={1367-4803},
  journal={Bioinformatics},
  pages={2503--2504},
  author={Spitz, Andreas and Zweig, Katharina A. and Horvát, Emőke-Ágnes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55777">
    <dcterms:abstract xml:lang="eng">Interactions between various types of molecules that regulate crucial cellular processes are extensively investigated by high-throughput experiments and require dedicated computational methods for the analysis of the resulting data. In many cases, these data can be represented as a bipartite graph because it describes interactions between elements of two different types such as the influence of different experimental conditions on cellular variables or the direct interaction between receptors and their activators/inhibitors. One of the major challenges in the analysis of such noisy datasets is the statistical evaluation of the relationship between any two elements of the same type. Here, we present SICOP (significant co-interaction patterns), an implementation of a method that provides such an evaluation based on the number of their common interaction partners, their so-called co-interaction. This general network analytic method, proved successful in diverse fields, provides a framework for assessing the significance of this relationship by comparison with the expected co-interaction in a suitable null model of the same bipartite graph. SICOP takes into consideration up to two distinct types of interactions such as up- or downregulation. The tool is written in Java and accepts several common input formats and supports different output formats, facilitating further analysis and visualization. Its key features include a user-friendly interface, easy installation and platform independence.</dcterms:abstract>
    <dc:creator>Zweig, Katharina A.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2013-10-01</dcterms:issued>
    <dc:creator>Spitz, Andreas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T13:33:50Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Zweig, Katharina A.</dc:contributor>
    <dcterms:title>SICOP : identifying significant co-interaction patterns</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55777"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T13:33:50Z</dcterms:available>
    <dc:creator>Horvát, Emőke-Ágnes</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dc:contributor>Horvát, Emőke-Ágnes</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen