Publikation: A Study of Mental Maps in Immersive Network Visualization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network's structure. We compare the two visualization environments using three tasks--interpreting network structure, memorizing a set of nodes, and identifying the structural changes--commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOTLAREK, Joseph, Oh-Hyun KWON, Kwan-Liu MA, Peter EADES, Andreas KERREN, Karsten KLEIN, Falk SCHREIBER, 2020. A Study of Mental Maps in Immersive Network Visualization. 2020 PacificVis. Tianjin, China, 14. Apr. 2020 - 17. Apr. 2020. In: BECK, Fabian, ed., Jinwook SEO, ed., Chaoli WANG, ed.. 2020 IEEE Pacific Visualization Symposium (PacificVis) : Tianjin, China, 14-17 April, 2020 : proceedings. Piscataway, NJ: IEEE, 2020, pp. 1-10. ISSN 2165-8765. eISSN 2165-8773. ISBN 978-1-72815-698-9. Available under: doi: 10.1109/PacificVis48177.2020.4722BibTex
@inproceedings{Kotlarek2020Study-52869, year={2020}, doi={10.1109/PacificVis48177.2020.4722}, title={A Study of Mental Maps in Immersive Network Visualization}, isbn={978-1-72815-698-9}, issn={2165-8765}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2020 IEEE Pacific Visualization Symposium (PacificVis) : Tianjin, China, 14-17 April, 2020 : proceedings}, pages={1--10}, editor={Beck, Fabian and Seo, Jinwook and Wang, Chaoli}, author={Kotlarek, Joseph and Kwon, Oh-Hyun and Ma, Kwan-Liu and Eades, Peter and Kerren, Andreas and Klein, Karsten and Schreiber, Falk} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52869"> <dc:contributor>Kerren, Andreas</dc:contributor> <dc:creator>Kotlarek, Joseph</dc:creator> <dcterms:title>A Study of Mental Maps in Immersive Network Visualization</dcterms:title> <dc:creator>Kwon, Oh-Hyun</dc:creator> <dc:creator>Schreiber, Falk</dc:creator> <dcterms:abstract xml:lang="eng">The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network's structure. We compare the two visualization environments using three tasks--interpreting network structure, memorizing a set of nodes, and identifying the structural changes--commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.</dcterms:abstract> <dc:creator>Ma, Kwan-Liu</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Klein, Karsten</dc:contributor> <dcterms:issued>2020</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52869"/> <dc:creator>Eades, Peter</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:52:48Z</dcterms:available> <dc:contributor>Ma, Kwan-Liu</dc:contributor> <dc:creator>Klein, Karsten</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kotlarek, Joseph</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-17T09:52:48Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Schreiber, Falk</dc:contributor> <dc:contributor>Kwon, Oh-Hyun</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Eades, Peter</dc:contributor> <dc:creator>Kerren, Andreas</dc:creator> </rdf:Description> </rdf:RDF>