Publikation:

Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Ortega, Juan-Pablo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Forecasting. 2014, 33(8), pp. 577-595. ISSN 0277-6693. eISSN 1099-131X. Available under: doi: 10.1002/for.2308

Zusammenfassung

We introduce a new strategy for the prediction of linear temporal aggregates; we call it ‘hybrid’ and study its performance using asymptotic theory. This scheme consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. We develop explicit expressions that approximately quantify the mean square forecasting errors associated with the different prediction schemes and that take into account the estimation error component. These approximate estimates indicate that the hybrid forecasting scheme tends to outperform the so-called ‘all-aggregated’ approach and, in some instances, the ‘all-disaggregated’ strategy that is known to be optimal when model selection and estimation errors are neglected. Unlike other related approximate formulas existing in the literature, those proposed in this paper are totally explicit and require neither assumptions on the second-order stationarity of the sample nor Monte Carlo simulations for their evaluation.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

ARMA; temporal aggregation; forecasting; hybrid forecasting

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, 2014. Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes. In: Journal of Forecasting. 2014, 33(8), pp. 577-595. ISSN 0277-6693. eISSN 1099-131X. Available under: doi: 10.1002/for.2308
BibTex
@article{Grigoryeva2014-12Hybri-40579,
  year={2014},
  doi={10.1002/for.2308},
  title={Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes},
  number={8},
  volume={33},
  issn={0277-6693},
  journal={Journal of Forecasting},
  pages={577--595},
  author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40579">
    <dc:contributor>Grigoryeva, Lyudmila</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40579"/>
    <dc:language>eng</dc:language>
    <dc:creator>Ortega, Juan-Pablo</dc:creator>
    <dc:creator>Grigoryeva, Lyudmila</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:37:46Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes</dcterms:title>
    <dcterms:abstract xml:lang="eng">We introduce a new strategy for the prediction of linear temporal aggregates; we call it ‘hybrid’ and study its performance using asymptotic theory. This scheme consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. We develop explicit expressions that approximately quantify the mean square forecasting errors associated with the different prediction schemes and that take into account the estimation error component. These approximate estimates indicate that the hybrid forecasting scheme tends to outperform the so-called ‘all-aggregated’ approach and, in some instances, the ‘all-disaggregated’ strategy that is known to be optimal when model selection and estimation errors are neglected. Unlike other related approximate formulas existing in the literature, those proposed in this paper are totally explicit and require neither assumptions on the second-order stationarity of the sample nor Monte Carlo simulations for their evaluation.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2014-12</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:37:46Z</dcterms:available>
    <dc:contributor>Ortega, Juan-Pablo</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen