Publikation: Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We introduce a new strategy for the prediction of linear temporal aggregates; we call it ‘hybrid’ and study its performance using asymptotic theory. This scheme consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. We develop explicit expressions that approximately quantify the mean square forecasting errors associated with the different prediction schemes and that take into account the estimation error component. These approximate estimates indicate that the hybrid forecasting scheme tends to outperform the so-called ‘all-aggregated’ approach and, in some instances, the ‘all-disaggregated’ strategy that is known to be optimal when model selection and estimation errors are neglected. Unlike other related approximate formulas existing in the literature, those proposed in this paper are totally explicit and require neither assumptions on the second-order stationarity of the sample nor Monte Carlo simulations for their evaluation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GRIGORYEVA, Lyudmila, Juan-Pablo ORTEGA, 2014. Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes. In: Journal of Forecasting. 2014, 33(8), pp. 577-595. ISSN 0277-6693. eISSN 1099-131X. Available under: doi: 10.1002/for.2308BibTex
@article{Grigoryeva2014-12Hybri-40579, year={2014}, doi={10.1002/for.2308}, title={Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes}, number={8}, volume={33}, issn={0277-6693}, journal={Journal of Forecasting}, pages={577--595}, author={Grigoryeva, Lyudmila and Ortega, Juan-Pablo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40579"> <dc:contributor>Grigoryeva, Lyudmila</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40579"/> <dc:language>eng</dc:language> <dc:creator>Ortega, Juan-Pablo</dc:creator> <dc:creator>Grigoryeva, Lyudmila</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:37:46Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Hybrid Forecasting with Estimated Temporally Aggregated Linear Processes</dcterms:title> <dcterms:abstract xml:lang="eng">We introduce a new strategy for the prediction of linear temporal aggregates; we call it ‘hybrid’ and study its performance using asymptotic theory. This scheme consists of carrying out model parameter estimation with data sampled at the highest available frequency and the subsequent prediction with data and models aggregated according to the forecasting horizon of interest. We develop explicit expressions that approximately quantify the mean square forecasting errors associated with the different prediction schemes and that take into account the estimation error component. These approximate estimates indicate that the hybrid forecasting scheme tends to outperform the so-called ‘all-aggregated’ approach and, in some instances, the ‘all-disaggregated’ strategy that is known to be optimal when model selection and estimation errors are neglected. Unlike other related approximate formulas existing in the literature, those proposed in this paper are totally explicit and require neither assumptions on the second-order stationarity of the sample nor Monte Carlo simulations for their evaluation.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2014-12</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-10T13:37:46Z</dcterms:available> <dc:contributor>Ortega, Juan-Pablo</dc:contributor> </rdf:Description> </rdf:RDF>