Publikation:

Representativeness and face-ism : Gender bias in image search

Lade...
Vorschaubild

Dateien

Ulloa_2-u04irkxlgs635.pdf
Ulloa_2-u04irkxlgs635.pdfGröße: 475.59 KBDownloads: 51

Datum

2024

Autor:innen

Richter, Ana Carolina
Makhortykh, Mykola
Urman, Aleksandra

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 491156185

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

New Media and Society. Sage. 2024, 26(6), S. 3541-3567. ISSN 1461-4448. eISSN 1461-7315. Verfügbar unter: doi: 10.1177/14614448221100699

Zusammenfassung

Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
300 Sozialwissenschaften, Soziologie

Schlagwörter

Algorithm auditing, face-ism, gender bias, image search, search engines

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ULLOA, Roberto, Ana Carolina RICHTER, Mykola MAKHORTYKH, Aleksandra URMAN, Celina KACPERSKI, 2024. Representativeness and face-ism : Gender bias in image search. In: New Media and Society. Sage. 2024, 26(6), S. 3541-3567. ISSN 1461-4448. eISSN 1461-7315. Verfügbar unter: doi: 10.1177/14614448221100699
BibTex
@article{Ulloa2024-06Repre-67715,
  year={2024},
  doi={10.1177/14614448221100699},
  title={Representativeness and face-ism : Gender bias in image search},
  number={6},
  volume={26},
  issn={1461-4448},
  journal={New Media and Society},
  pages={3541--3567},
  author={Ulloa, Roberto and Richter, Ana Carolina and Makhortykh, Mykola and Urman, Aleksandra and Kacperski, Celina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67715">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-31T11:40:23Z</dc:date>
    <dc:contributor>Kacperski, Celina</dc:contributor>
    <dc:contributor>Richter, Ana Carolina</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67715"/>
    <dcterms:issued>2024-06</dcterms:issued>
    <dc:creator>Makhortykh, Mykola</dc:creator>
    <dcterms:abstract>Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:creator>Kacperski, Celina</dc:creator>
    <dc:creator>Ulloa, Roberto</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dc:contributor>Ulloa, Roberto</dc:contributor>
    <dc:contributor>Makhortykh, Mykola</dc:contributor>
    <dc:creator>Richter, Ana Carolina</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-31T11:40:23Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Urman, Aleksandra</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Urman, Aleksandra</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67715/1/Ulloa_2-u04irkxlgs635.pdf"/>
    <dcterms:title>Representativeness and face-ism : Gender bias in image search</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67715/1/Ulloa_2-u04irkxlgs635.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen