Visual mining geo-related data using pixel bar charts
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A common approach to analyze geo-related data is using bar charts or x-y plots. They are intuitive and easy to use. But important information often gets lost. In this paper, we introduce a new interactive visualization technique called Geo Pixel Bar Charts, which combines the advantages of Pixel Bar Charts and interactive maps. This technique allows analysts to visualize large amounts of spatial data without aggregation and shows the geographical regions corresponding to the spatial data attribute at the same time. In this paper, we apply Geo Pixel Bar Charts to visually mining sales transactions and Internet usage from different locations. Our experimental results show the effectiveness of this technique for providing data distribution and immediate identification of anomalies from the map.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAO, Ming C., Daniel A. KEIM, Umeshwar DAYAL, Peter E. WRIGHT, Joern SCHNEIDEWIND, 2005. Visual mining geo-related data using pixel bar charts. Electronic Imaging 2005. San Jose, CA, 16. Jan. 2005 - 20. Jan. 2005. In: ERBACHER, Robert F., ed., Jonathan C. ROBERTS, ed. and others. Visualization and Data Analysis 2005. Bellingham, Wash.: SPIE, 2005, pp. 87-94. SPIE Proceedings. 5669. ISBN 978-0-8194-5725-7. Available under: doi: 10.1117/12.586037BibTex
@inproceedings{Hao2005Visua-41032, year={2005}, doi={10.1117/12.586037}, title={Visual mining geo-related data using pixel bar charts}, number={5669}, isbn={978-0-8194-5725-7}, publisher={SPIE}, address={Bellingham, Wash.}, series={SPIE Proceedings}, booktitle={Visualization and Data Analysis 2005}, pages={87--94}, editor={Erbacher, Robert F. and Roberts, Jonathan C.}, author={Hao, Ming C. and Keim, Daniel A. and Dayal, Umeshwar and Wright, Peter E. and Schneidewind, Joern} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41032"> <dcterms:issued>2005</dcterms:issued> <dcterms:title>Visual mining geo-related data using pixel bar charts</dcterms:title> <dc:contributor>Schneidewind, Joern</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:abstract xml:lang="eng">A common approach to analyze geo-related data is using bar charts or x-y plots. They are intuitive and easy to use. But important information often gets lost. In this paper, we introduce a new interactive visualization technique called Geo Pixel Bar Charts, which combines the advantages of Pixel Bar Charts and interactive maps. This technique allows analysts to visualize large amounts of spatial data without aggregation and shows the geographical regions corresponding to the spatial data attribute at the same time. In this paper, we apply Geo Pixel Bar Charts to visually mining sales transactions and Internet usage from different locations. Our experimental results show the effectiveness of this technique for providing data distribution and immediate identification of anomalies from the map.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41032"/> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:creator>Schneidewind, Joern</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Dayal, Umeshwar</dc:contributor> <dc:creator>Hao, Ming C.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-10T10:32:06Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-10T10:32:06Z</dcterms:available> <dc:contributor>Wright, Peter E.</dc:contributor> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:creator>Wright, Peter E.</dc:creator> </rdf:Description> </rdf:RDF>