Publikation: Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Time series data is increasingly used in a wide range of fields, and it is often relied on in crucial applications and high-stakes decision-making. For instance, sensors generate time series data to recognize different types of anomalies through automatic decision-making systems. Typically, these systems are realized with machine learning models that achieve top-tier performance on time series classification tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human standpoint. Recently, we observed a consistent increase in the development of explanation methods for time series classification justifying the need to structure and review the field. In this work, we (a) present the first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the research field through a taxonomy subdividing the methods into time points-based, subsequences-based and instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation of explanations and interpretability.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
THEISSLER, Andreas, Francesco SPINNATO, Udo SCHLEGEL, Riccardo GUIDOTTI, 2022. Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions. In: IEEE Access. IEEE. 2022, 10, S. 100700-100724. eISSN 2169-3536. Verfügbar unter: doi: 10.1109/ACCESS.2022.3207765BibTex
@article{Theissler2022Expla-59034, year={2022}, doi={10.1109/ACCESS.2022.3207765}, title={Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions}, volume={10}, journal={IEEE Access}, pages={100700--100724}, author={Theissler, Andreas and Spinnato, Francesco and Schlegel, Udo and Guidotti, Riccardo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59034"> <dcterms:title>Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions</dcterms:title> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Guidotti, Riccardo</dc:contributor> <dcterms:abstract xml:lang="eng">Time series data is increasingly used in a wide range of fields, and it is often relied on in crucial applications and high-stakes decision-making. For instance, sensors generate time series data to recognize different types of anomalies through automatic decision-making systems. Typically, these systems are realized with machine learning models that achieve top-tier performance on time series classification tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human standpoint. Recently, we observed a consistent increase in the development of explanation methods for time series classification justifying the need to structure and review the field. In this work, we (a) present the first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the research field through a taxonomy subdividing the methods into time points-based, subsequences-based and instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation of explanations and interpretability.</dcterms:abstract> <dc:creator>Theissler, Andreas</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59034/1/Theissler_2-tmylb2s4jlxo4.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Theissler, Andreas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59034/1/Theissler_2-tmylb2s4jlxo4.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/legalcode/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-04T12:06:10Z</dcterms:available> <dc:creator>Spinnato, Francesco</dc:creator> <dc:contributor>Spinnato, Francesco</dc:contributor> <dc:creator>Guidotti, Riccardo</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-04T12:06:10Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2022</dcterms:issued> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59034"/> <dc:creator>Schlegel, Udo</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>