Publikation:

Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions

Lade...
Vorschaubild

Dateien

Theissler_2-tmylb2s4jlxo4.pdf
Theissler_2-tmylb2s4jlxo4.pdfGröße: 1.97 MBDownloads: 1737

Datum

2022

Autor:innen

Theissler, Andreas
Spinnato, Francesco
Guidotti, Riccardo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Access. IEEE. 2022, 10, S. 100700-100724. eISSN 2169-3536. Verfügbar unter: doi: 10.1109/ACCESS.2022.3207765

Zusammenfassung

Time series data is increasingly used in a wide range of fields, and it is often relied on in crucial applications and high-stakes decision-making. For instance, sensors generate time series data to recognize different types of anomalies through automatic decision-making systems. Typically, these systems are realized with machine learning models that achieve top-tier performance on time series classification tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human standpoint. Recently, we observed a consistent increase in the development of explanation methods for time series classification justifying the need to structure and review the field. In this work, we (a) present the first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the research field through a taxonomy subdividing the methods into time points-based, subsequences-based and instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation of explanations and interpretability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690THEISSLER, Andreas, Francesco SPINNATO, Udo SCHLEGEL, Riccardo GUIDOTTI, 2022. Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions. In: IEEE Access. IEEE. 2022, 10, S. 100700-100724. eISSN 2169-3536. Verfügbar unter: doi: 10.1109/ACCESS.2022.3207765
BibTex
@article{Theissler2022Expla-59034,
  year={2022},
  doi={10.1109/ACCESS.2022.3207765},
  title={Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions},
  volume={10},
  journal={IEEE Access},
  pages={100700--100724},
  author={Theissler, Andreas and Spinnato, Francesco and Schlegel, Udo and Guidotti, Riccardo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59034">
    <dcterms:title>Explainable AI for Time Series Classification : A Review, Taxonomy and Research Directions</dcterms:title>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:contributor>Guidotti, Riccardo</dc:contributor>
    <dcterms:abstract xml:lang="eng">Time series data is increasingly used in a wide range of fields, and it is often relied on in crucial applications and high-stakes decision-making. For instance, sensors generate time series data to recognize different types of anomalies through automatic decision-making systems. Typically, these systems are realized with machine learning models that achieve top-tier performance on time series classification tasks. Unfortunately, the logic behind their prediction is opaque and hard to understand from a human standpoint. Recently, we observed a consistent increase in the development of explanation methods for time series classification justifying the need to structure and review the field. In this work, we (a) present the first extensive literature review on Explainable AI (XAI) for time series classification, (b) categorize the research field through a taxonomy subdividing the methods into time points-based, subsequences-based and instance-based, and (c) identify open research directions regarding the type of explanations and the evaluation of explanations and interpretability.</dcterms:abstract>
    <dc:creator>Theissler, Andreas</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59034/1/Theissler_2-tmylb2s4jlxo4.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Theissler, Andreas</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59034/1/Theissler_2-tmylb2s4jlxo4.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/legalcode/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-04T12:06:10Z</dcterms:available>
    <dc:creator>Spinnato, Francesco</dc:creator>
    <dc:contributor>Spinnato, Francesco</dc:contributor>
    <dc:creator>Guidotti, Riccardo</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-04T12:06:10Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59034"/>
    <dc:creator>Schlegel, Udo</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen