Publikation: Distributionally Robust Optimization with Markovian Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves O(d2) decision variables. Thus, it cannot be solved efficiently for large d. By exploiting the structure of this problem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size O(d). We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Mengmeng, Tobias SUTTER, Daniel KUHN, 2021. Distributionally Robust Optimization with Markovian Data. 38th International Conference on Machine Learning (Virtual), 18. Juli 2021 - 24. Juli 2021. In: MEILA, Marina, ed., Tong ZHANG, ed.. Proceedings of the 38th International Conference on Machine Learning. 2021, pp. 6493-6503. Proceedings of Machine Learning Research. 139. ISSN 2640-3498BibTex
@inproceedings{Li2021Distr-55737, year={2021}, title={Distributionally Robust Optimization with Markovian Data}, url={https://proceedings.mlr.press/v139/li21t.html}, number={139}, issn={2640-3498}, series={Proceedings of Machine Learning Research}, booktitle={Proceedings of the 38th International Conference on Machine Learning}, pages={6493--6503}, editor={Meila, Marina and Zhang, Tong}, author={Li, Mengmeng and Sutter, Tobias and Kuhn, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55737"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55737"/> <dc:creator>Sutter, Tobias</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55737/1/Li_2-tkazjz82mggz2.PDF"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:37:11Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Sutter, Tobias</dc:contributor> <dcterms:abstract xml:lang="eng">We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves O(d<sup>2</sup>) decision variables. Thus, it cannot be solved efficiently for large d. By exploiting the structure of this problem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size O(d). We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Li, Mengmeng</dc:creator> <dcterms:issued>2021</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55737/1/Li_2-tkazjz82mggz2.PDF"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:title>Distributionally Robust Optimization with Markovian Data</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:37:11Z</dcterms:available> <dc:contributor>Kuhn, Daniel</dc:contributor> <dc:contributor>Li, Mengmeng</dc:contributor> <dc:creator>Kuhn, Daniel</dc:creator> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>