Distributionally Robust Optimization with Markovian Data

Lade...
Vorschaubild
Dateien
Li_2-tkazjz82mggz2.PDF
Li_2-tkazjz82mggz2.PDFGröße: 553.68 KBDownloads: 6
Datum
2021
Autor:innen
Li, Mengmeng
Kuhn, Daniel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MEILA, Marina, ed., Tong ZHANG, ed.. Proceedings of the 38th International Conference on Machine Learning. 2021, pp. 6493-6503. Proceedings of Machine Learning Research. 139. ISSN 2640-3498
Zusammenfassung

We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves O(d2) decision variables. Thus, it cannot be solved efficiently for large d. By exploiting the structure of this problem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size O(d). We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
38th International Conference on Machine Learning (Virtual), 18. Juli 2021 - 24. Juli 2021
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LI, Mengmeng, Tobias SUTTER, Daniel KUHN, 2021. Distributionally Robust Optimization with Markovian Data. 38th International Conference on Machine Learning (Virtual), 18. Juli 2021 - 24. Juli 2021. In: MEILA, Marina, ed., Tong ZHANG, ed.. Proceedings of the 38th International Conference on Machine Learning. 2021, pp. 6493-6503. Proceedings of Machine Learning Research. 139. ISSN 2640-3498
BibTex
@inproceedings{Li2021Distr-55737,
  year={2021},
  title={Distributionally Robust Optimization with Markovian Data},
  url={https://proceedings.mlr.press/v139/li21t.html},
  number={139},
  issn={2640-3498},
  series={Proceedings of Machine Learning Research},
  booktitle={Proceedings of the 38th International Conference on Machine Learning},
  pages={6493--6503},
  editor={Meila, Marina and Zhang, Tong},
  author={Li, Mengmeng and Sutter, Tobias and Kuhn, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55737">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55737"/>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55737/1/Li_2-tkazjz82mggz2.PDF"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:37:11Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dcterms:abstract xml:lang="eng">We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from large deviations theory, we derive statistical guarantees on the quality of these estimators. The underlying worst-case expectation problem is nonconvex and involves O(d&lt;sup&gt;2&lt;/sup&gt;) decision variables. Thus, it cannot be solved efficiently for large d. By exploiting the structure of this problem, we devise a customized Frank-Wolfe algorithm with convex direction-finding subproblems of size O(d). We prove that this algorithm finds a stationary point efficiently under mild conditions. The efficiency of the method is predicated on a dimensionality reduction enabled by a dual reformulation. Numerical experiments indicate that our approach has better computational and statistical properties than the state-of-the-art methods.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Li, Mengmeng</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55737/1/Li_2-tkazjz82mggz2.PDF"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Distributionally Robust Optimization with Markovian Data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:37:11Z</dcterms:available>
    <dc:contributor>Kuhn, Daniel</dc:contributor>
    <dc:contributor>Li, Mengmeng</dc:contributor>
    <dc:creator>Kuhn, Daniel</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2021-12-02
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet