Publikation: Free analysis, convexity and LMI domains
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper concerns the geometry of noncommutative domains and analytic free
maps. These maps are free analogs of classical analytic functions in several complex variables, and are de ned in terms of noncommuting variables amongst which there are no relations - they are free variables. Analytic free maps include vector-valued polynomials in free (noncommuting)
variables and form a canonical class of mappings from one noncommutative domain
D in say g variables to another noncommutative domain ~D in ~g variables.
This article contains rigidity results paralleling those in the commutative world of several complex variables { particularly, in the case that the domains are circular and bounded. For instance, we show that proper free maps are one-to-one. Furthermore, between two freely biholomorphic bounded oncommutative domains there exists a linear biholomorphism. Because of its role in systems engineering, convexity is a major topic. Hence of particular interest is the case of domains de ned by a linear matrix inequality, or LMI domains. Our main theorem yields the following nonconvexi cation result: If a bounded circular noncommutative domain D is freely biholomorphic to a bounded circular LMI domain, then D is itself an LMI domain.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HELTON, J. William, Igor KLEP, Scott MCCULLOUGH, 2011. Free analysis, convexity and LMI domainsBibTex
@techreport{Helton2011analy-15282, year={2011}, series={Konstanzer Schriften in Mathematik}, title={Free analysis, convexity and LMI domains}, number={286}, author={Helton, J. William and Klep, Igor and McCullough, Scott} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15282"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Klep, Igor</dc:contributor> <dc:contributor>McCullough, Scott</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15282/1/286%20Helton.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15282/1/286%20Helton.pdf"/> <dcterms:issued>2011</dcterms:issued> <dcterms:title>Free analysis, convexity and LMI domains</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T08:03:18Z</dc:date> <dcterms:abstract xml:lang="eng">This paper concerns the geometry of noncommutative domains and analytic free<br />maps. These maps are free analogs of classical analytic functions in several complex variables, and are de ned in terms of noncommuting variables amongst which there are no relations - they are free variables. Analytic free maps include vector-valued polynomials in free (noncommuting)<br />variables and form a canonical class of mappings from one noncommutative domain<br />D in say g variables to another noncommutative domain ~D in ~g variables.<br /><br />This article contains rigidity results paralleling those in the commutative world of several complex variables { particularly, in the case that the domains are circular and bounded. For instance, we show that proper free maps are one-to-one. Furthermore, between two freely biholomorphic bounded oncommutative domains there exists a linear biholomorphism. Because of its role in systems engineering, convexity is a major topic. Hence of particular interest is the case of domains de ned by a linear matrix inequality, or LMI domains. Our main theorem yields the following nonconvexi cation result: If a bounded circular noncommutative domain D is freely biholomorphic to a bounded circular LMI domain, then D is itself an LMI domain.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15282"/> <dc:contributor>Helton, J. William</dc:contributor> <dc:creator>Klep, Igor</dc:creator> <dc:creator>Helton, J. William</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>McCullough, Scott</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T08:03:18Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>