Publikation:

Free analysis, convexity and LMI domains

Lade...
Vorschaubild

Dateien

286 Helton.pdf
286 Helton.pdfGröße: 766.83 KBDownloads: 250

Datum

2011

Autor:innen

Helton, J. William
McCullough, Scott

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper concerns the geometry of noncommutative domains and analytic free
maps. These maps are free analogs of classical analytic functions in several complex variables, and are de ned in terms of noncommuting variables amongst which there are no relations - they are free variables. Analytic free maps include vector-valued polynomials in free (noncommuting)
variables and form a canonical class of mappings from one noncommutative domain
D in say g variables to another noncommutative domain ~D in ~g variables.

This article contains rigidity results paralleling those in the commutative world of several complex variables { particularly, in the case that the domains are circular and bounded. For instance, we show that proper free maps are one-to-one. Furthermore, between two freely biholomorphic bounded oncommutative domains there exists a linear biholomorphism. Because of its role in systems engineering, convexity is a major topic. Hence of particular interest is the case of domains de ned by a linear matrix inequality, or LMI domains. Our main theorem yields the following nonconvexi cation result: If a bounded circular noncommutative domain D is freely biholomorphic to a bounded circular LMI domain, then D is itself an LMI domain.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

noncommutative set and function, analytic map, proper map, rigidity, linear matrix inequality, several complex variables, free analysis, free real algebraic geometry

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HELTON, J. William, Igor KLEP, Scott MCCULLOUGH, 2011. Free analysis, convexity and LMI domains
BibTex
@techreport{Helton2011analy-15282,
  year={2011},
  series={Konstanzer Schriften in Mathematik},
  title={Free analysis, convexity and LMI domains},
  number={286},
  author={Helton, J. William and Klep, Igor and McCullough, Scott}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15282">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dc:contributor>McCullough, Scott</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15282/1/286%20Helton.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15282/1/286%20Helton.pdf"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:title>Free analysis, convexity and LMI domains</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T08:03:18Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper concerns the geometry of noncommutative domains and analytic free&lt;br /&gt;maps. These maps are free analogs of classical analytic functions in several complex variables, and are de ned in terms of noncommuting variables amongst which there are no relations - they are free variables. Analytic free maps include vector-valued polynomials in free (noncommuting)&lt;br /&gt;variables and form a canonical class of mappings from one noncommutative domain&lt;br /&gt;D in say g variables to another noncommutative domain ~D in ~g variables.&lt;br /&gt;&lt;br /&gt;This article contains rigidity results paralleling those in the commutative world of several complex variables { particularly, in the case that the domains are circular and bounded. For instance, we show that proper free maps are one-to-one. Furthermore, between two freely biholomorphic bounded  oncommutative domains there exists a linear biholomorphism. Because of its role in systems engineering, convexity is a major topic. Hence of particular interest is the case of domains de ned by a linear matrix inequality, or LMI domains. Our main theorem yields the following nonconvexi cation result: If a bounded circular noncommutative domain D is freely biholomorphic to a bounded circular LMI domain, then D is itself an LMI domain.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15282"/>
    <dc:contributor>Helton, J. William</dc:contributor>
    <dc:creator>Klep, Igor</dc:creator>
    <dc:creator>Helton, J. William</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>McCullough, Scott</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-09-05T08:03:18Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen