Publikation: Citation-based plagiarism detection : practicability on a large-scale scientific corpus
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The automated detection of plagiarism is an information retrieval task of increasing importance as the volume of readily accessible information on the web expands. A major shortcoming of current automated plagiarism detection approaches is their dependence on high character-based similarity. As a result, heavily disguised plagiarism forms, such as paraphrases, translated plagiarism, or structural and idea plagiarism, remain undetected. A recently proposed language-independent approach to plagiarism detection, Citation-based Plagiarism Detection (CbPD), allows the detection of semantic similarity even in the absence of text overlap by analyzing the citation placement in a document's full text to determine similarity. This article evaluates the performance of CbPD in detecting plagiarism with various degrees of disguise in a collection of 185,000 biomedical articles. We benchmark CbPD against two character-based detection approaches using a ground truth approximated in a user study. Our evaluation shows that the citation-based approach achieves superior ranking performance for heavily disguised plagiarism forms. Additionally, we demonstrate CbPD to be computationally more efficient than character-based approaches. Finally, upon combining the citation-based with the traditional character-based document similarity visualization methods in a hybrid detection prototype, we observe a reduction in the required user effort for document verification.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GIPP, Bela, Norman MEUSCHKE, Corinna BREITINGER, 2014. Citation-based plagiarism detection : practicability on a large-scale scientific corpus. In: Journal of the Association for Information Science and Technology. 2014, 65(8), pp. 1527-1540. ISSN 2330-1635. eISSN 2330-1643. Available under: doi: 10.1002/asi.23228BibTex
@article{Gipp2014Citat-30291, year={2014}, doi={10.1002/asi.23228}, title={Citation-based plagiarism detection : practicability on a large-scale scientific corpus}, number={8}, volume={65}, issn={2330-1635}, journal={Journal of the Association for Information Science and Technology}, pages={1527--1540}, author={Gipp, Bela and Meuschke, Norman and Breitinger, Corinna} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30291"> <dc:creator>Breitinger, Corinna</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30291/1/Gipp_0-283268.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Gipp, Bela</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:34:12Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Citation-based plagiarism detection : practicability on a large-scale scientific corpus</dcterms:title> <dcterms:abstract xml:lang="eng">The automated detection of plagiarism is an information retrieval task of increasing importance as the volume of readily accessible information on the web expands. A major shortcoming of current automated plagiarism detection approaches is their dependence on high character-based similarity. As a result, heavily disguised plagiarism forms, such as paraphrases, translated plagiarism, or structural and idea plagiarism, remain undetected. A recently proposed language-independent approach to plagiarism detection, Citation-based Plagiarism Detection (CbPD), allows the detection of semantic similarity even in the absence of text overlap by analyzing the citation placement in a document's full text to determine similarity. This article evaluates the performance of CbPD in detecting plagiarism with various degrees of disguise in a collection of 185,000 biomedical articles. We benchmark CbPD against two character-based detection approaches using a ground truth approximated in a user study. Our evaluation shows that the citation-based approach achieves superior ranking performance for heavily disguised plagiarism forms. Additionally, we demonstrate CbPD to be computationally more efficient than character-based approaches. Finally, upon combining the citation-based with the traditional character-based document similarity visualization methods in a hybrid detection prototype, we observe a reduction in the required user effort for document verification.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30291"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30291/1/Gipp_0-283268.pdf"/> <dc:contributor>Meuschke, Norman</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Breitinger, Corinna</dc:contributor> <dc:creator>Meuschke, Norman</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:34:12Z</dcterms:available> </rdf:Description> </rdf:RDF>