Publikation: Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate transmission problems between a (thermo)viscoelastic system with Kelvin--Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin--Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The approach shows the lack of exponential stability using Weyl's theorem on perturbations of the essential spectrum. Instead, strong stability can be shown using the principle of unique continuation. To prove polynomial stability we provide an extended version of the characterizations in [A. Borichev and Y. Tomilov, Math. Ann., 347 (2009), pp. 455--478]. Observations on the lack of compacity of the inverse of the arising semigroup generators are included too. The results apply to thermoviscoelastic systems, to purely elastic systems as well as to the scalar case consisting of wave equations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MUNOZ RIVERA, Jaime E., Reinhard RACKE, 2017. Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability. In: SIAM Journal on Mathematical Analysis. 2017, 49(5), pp. 3741-3765. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/16M1072747BibTex
@article{MunozRivera2017-01Trans-40995, year={2017}, doi={10.1137/16M1072747}, title={Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability}, number={5}, volume={49}, issn={0036-1410}, journal={SIAM Journal on Mathematical Analysis}, pages={3741--3765}, author={Munoz Rivera, Jaime E. and Racke, Reinhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40995"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T08:51:24Z</dc:date> <dc:contributor>Racke, Reinhard</dc:contributor> <dc:contributor>Munoz Rivera, Jaime E.</dc:contributor> <dcterms:issued>2017-01</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40995"/> <dcterms:title>Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T08:51:24Z</dcterms:available> <dc:creator>Munoz Rivera, Jaime E.</dc:creator> <dc:creator>Racke, Reinhard</dc:creator> <dcterms:abstract xml:lang="eng">We investigate transmission problems between a (thermo)viscoelastic system with Kelvin--Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin--Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The approach shows the lack of exponential stability using Weyl's theorem on perturbations of the essential spectrum. Instead, strong stability can be shown using the principle of unique continuation. To prove polynomial stability we provide an extended version of the characterizations in [A. Borichev and Y. Tomilov, Math. Ann., 347 (2009), pp. 455--478]. Observations on the lack of compacity of the inverse of the arising semigroup generators are included too. The results apply to thermoviscoelastic systems, to purely elastic systems as well as to the scalar case consisting of wave equations.</dcterms:abstract> </rdf:Description> </rdf:RDF>