Publikation:

Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Munoz Rivera, Jaime E.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

SIAM Journal on Mathematical Analysis. 2017, 49(5), pp. 3741-3765. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/16M1072747

Zusammenfassung

We investigate transmission problems between a (thermo)viscoelastic system with Kelvin--Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin--Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The approach shows the lack of exponential stability using Weyl's theorem on perturbations of the essential spectrum. Instead, strong stability can be shown using the principle of unique continuation. To prove polynomial stability we provide an extended version of the characterizations in [A. Borichev and Y. Tomilov, Math. Ann., 347 (2009), pp. 455--478]. Observations on the lack of compacity of the inverse of the arising semigroup generators are included too. The results apply to thermoviscoelastic systems, to purely elastic systems as well as to the scalar case consisting of wave equations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MUNOZ RIVERA, Jaime E., Reinhard RACKE, 2017. Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability. In: SIAM Journal on Mathematical Analysis. 2017, 49(5), pp. 3741-3765. ISSN 0036-1410. eISSN 1095-7154. Available under: doi: 10.1137/16M1072747
BibTex
@article{MunozRivera2017-01Trans-40995,
  year={2017},
  doi={10.1137/16M1072747},
  title={Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability},
  number={5},
  volume={49},
  issn={0036-1410},
  journal={SIAM Journal on Mathematical Analysis},
  pages={3741--3765},
  author={Munoz Rivera, Jaime E. and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40995">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T08:51:24Z</dc:date>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dc:contributor>Munoz Rivera, Jaime E.</dc:contributor>
    <dcterms:issued>2017-01</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40995"/>
    <dcterms:title>Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping : Nonexponential, Strong, and Polynomial Stability</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-21T08:51:24Z</dcterms:available>
    <dc:creator>Munoz Rivera, Jaime E.</dc:creator>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dcterms:abstract xml:lang="eng">We investigate transmission problems between a (thermo)viscoelastic system with Kelvin--Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin--Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The approach shows the lack of exponential stability using Weyl's theorem on perturbations of the essential spectrum. Instead, strong stability can be shown using the principle of unique continuation. To prove polynomial stability we provide an extended version of the characterizations in [A. Borichev and Y. Tomilov, Math. Ann., 347 (2009), pp. 455--478]. Observations on the lack of compacity of the inverse of the arising semigroup generators are included too. The results apply to thermoviscoelastic systems, to purely elastic systems as well as to the scalar case consisting of wave equations.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen