Publikation: Immersive analytics : an overview
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Immersive Analytics is concerned with the systematic examination of the benefits and challenges of using immersive environments for data analysis, and the development of corresponding designs that improve the quality and efficiency of the analysis process. While immersive technologies are now broadly available, practical solutions haven’t received broad acceptance in real-world applications outside of several core areas, and proper guidelines on the design of such solutions are still under development. Both fundamental research and applications bring together topics and questions from several fields, and open a wide range of directions regarding underlying theory, evidence from user studies, and practical solutions tailored towards the requirements of application areas. We give an overview on the concepts, topics, research questions, and challenges.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KLEIN, Karsten, Michael SEDLMAIR, Falk SCHREIBER, 2022. Immersive analytics : an overview. In: it - Information Technology. De Gruyter Oldenbourg. 2022, 64(4-5), pp. 155-168. ISSN 0013-5720. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0037BibTex
@article{Klein2022Immer-58592, year={2022}, doi={10.1515/itit-2022-0037}, title={Immersive analytics : an overview}, number={4-5}, volume={64}, issn={0013-5720}, journal={it - Information Technology}, pages={155--168}, author={Klein, Karsten and Sedlmair, Michael and Schreiber, Falk} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58592"> <dc:creator>Schreiber, Falk</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-12T06:05:24Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Sedlmair, Michael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58592/1/Klein_2-t7hmx5q89wil2.pdf"/> <dc:contributor>Sedlmair, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58592"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2022</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Klein, Karsten</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58592/1/Klein_2-t7hmx5q89wil2.pdf"/> <dc:contributor>Schreiber, Falk</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-12T06:05:24Z</dcterms:available> <dc:contributor>Klein, Karsten</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Immersive analytics : an overview</dcterms:title> <dcterms:abstract xml:lang="eng">Immersive Analytics is concerned with the systematic examination of the benefits and challenges of using immersive environments for data analysis, and the development of corresponding designs that improve the quality and efficiency of the analysis process. While immersive technologies are now broadly available, practical solutions haven’t received broad acceptance in real-world applications outside of several core areas, and proper guidelines on the design of such solutions are still under development. Both fundamental research and applications bring together topics and questions from several fields, and open a wide range of directions regarding underlying theory, evidence from user studies, and practical solutions tailored towards the requirements of application areas. We give an overview on the concepts, topics, research questions, and challenges.</dcterms:abstract> </rdf:Description> </rdf:RDF>