Publikation: Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The increasing availability of enriched geospatial data has opened up a new domain and enables the development of more sophisticated location-based services and applications. However, this development has also given rise to various data quality problems as it is very hard to verify the data for all real-world entities contained in a dataset. In this paper, we propose ARCI, a relative quality indicator which exploits the vast availability of spatio-textual datasets, to indicate how confident a user can be in the correctness of a given dataset. ARCI operates in the absence of ground truth and aims at computing the relative quality of an input dataset by cross-referencing its entries among various similar datasets. We also present an algorithm for computing ARCI and we evaluate its performance in a preliminary experimental evaluation using real-world datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GE, Mouzhi, Theodoros CHONDROGIANNIS, 2017. Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth. 21th East European Conference on Advances in Databases and Information Systems : ADBIS 2017. Nicosia, Cyprus, 24. Sept. 2017 - 27. Sept. 2017. In: KIRIKOVA, Mārīte, ed., Kjetil NØRVÅG, ed., George A. PAPADOPOULOS, ed., Johann GAMPER, ed., Robert WREMBEL, ed., Jérôme DARMONT, ed., Stefano RIZZI, ed.. New Trends in Databases and Information Systems : ADBIS 2017 Short Papers and Workshops. Cham: Springer International Publishing, 2017, pp. 12-20. Communications in Computer and Information Science. 767. eISSN 1865-0929. ISBN 978-3-319-67161-1. Available under: doi: 10.1007/978-3-319-67162-8_2BibTex
@inproceedings{Ge2017-09-09Asses-41136, year={2017}, doi={10.1007/978-3-319-67162-8_2}, title={Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth}, number={767}, isbn={978-3-319-67161-1}, publisher={Springer International Publishing}, address={Cham}, series={Communications in Computer and Information Science}, booktitle={New Trends in Databases and Information Systems : ADBIS 2017 Short Papers and Workshops}, pages={12--20}, editor={Kirikova, Mārīte and Nørvåg, Kjetil and Papadopoulos, George A. and Gamper, Johann and Wrembel, Robert and Darmont, Jérôme and Rizzi, Stefano}, author={Ge, Mouzhi and Chondrogiannis, Theodoros} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41136"> <dc:creator>Ge, Mouzhi</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T14:52:57Z</dc:date> <dc:creator>Chondrogiannis, Theodoros</dc:creator> <dcterms:abstract xml:lang="eng">The increasing availability of enriched geospatial data has opened up a new domain and enables the development of more sophisticated location-based services and applications. However, this development has also given rise to various data quality problems as it is very hard to verify the data for all real-world entities contained in a dataset. In this paper, we propose ARCI, a relative quality indicator which exploits the vast availability of spatio-textual datasets, to indicate how confident a user can be in the correctness of a given dataset. ARCI operates in the absence of ground truth and aims at computing the relative quality of an input dataset by cross-referencing its entries among various similar datasets. We also present an algorithm for computing ARCI and we evaluate its performance in a preliminary experimental evaluation using real-world datasets.</dcterms:abstract> <dc:contributor>Chondrogiannis, Theodoros</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41136"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Ge, Mouzhi</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth</dcterms:title> <dcterms:issued>2017-09-09</dcterms:issued> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T14:52:57Z</dcterms:available> </rdf:Description> </rdf:RDF>