Publikation: Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The increasing availability of enriched geospatial data has opened up a new domain and enables the development of more sophisticated location-based services and applications. However, this development has also given rise to various data quality problems as it is very hard to verify the data for all real-world entities contained in a dataset. In this paper, we propose ARCI, a relative quality indicator which exploits the vast availability of spatio-textual datasets, to indicate how confident a user can be in the correctness of a given dataset. ARCI operates in the absence of ground truth and aims at computing the relative quality of an input dataset by cross-referencing its entries among various similar datasets. We also present an algorithm for computing ARCI and we evaluate its performance in a preliminary experimental evaluation using real-world datasets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GE, Mouzhi, Theodoros CHONDROGIANNIS, 2017. Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth. 21th East European Conference on Advances in Databases and Information Systems : ADBIS 2017. Nicosia, Cyprus, 24. Sept. 2017 - 27. Sept. 2017. In: KIRIKOVA, Mārīte, ed., Kjetil NØRVÅG, ed., George A. PAPADOPOULOS, ed., Johann GAMPER, ed., Robert WREMBEL, ed., Jérôme DARMONT, ed., Stefano RIZZI, ed.. New Trends in Databases and Information Systems : ADBIS 2017 Short Papers and Workshops. Cham: Springer International Publishing, 2017, pp. 12-20. Communications in Computer and Information Science. 767. eISSN 1865-0929. ISBN 978-3-319-67161-1. Available under: doi: 10.1007/978-3-319-67162-8_2BibTex
@inproceedings{Ge2017-09-09Asses-41136,
year={2017},
doi={10.1007/978-3-319-67162-8_2},
title={Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth},
number={767},
isbn={978-3-319-67161-1},
publisher={Springer International Publishing},
address={Cham},
series={Communications in Computer and Information Science},
booktitle={New Trends in Databases and Information Systems : ADBIS 2017 Short Papers and Workshops},
pages={12--20},
editor={Kirikova, Mārīte and Nørvåg, Kjetil and Papadopoulos, George A. and Gamper, Johann and Wrembel, Robert and Darmont, Jérôme and Rizzi, Stefano},
author={Ge, Mouzhi and Chondrogiannis, Theodoros}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41136">
<dc:creator>Ge, Mouzhi</dc:creator>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T14:52:57Z</dc:date>
<dc:creator>Chondrogiannis, Theodoros</dc:creator>
<dcterms:abstract xml:lang="eng">The increasing availability of enriched geospatial data has opened up a new domain and enables the development of more sophisticated location-based services and applications. However, this development has also given rise to various data quality problems as it is very hard to verify the data for all real-world entities contained in a dataset. In this paper, we propose ARCI, a relative quality indicator which exploits the vast availability of spatio-textual datasets, to indicate how confident a user can be in the correctness of a given dataset. ARCI operates in the absence of ground truth and aims at computing the relative quality of an input dataset by cross-referencing its entries among various similar datasets. We also present an algorithm for computing ARCI and we evaluate its performance in a preliminary experimental evaluation using real-world datasets.</dcterms:abstract>
<dc:contributor>Chondrogiannis, Theodoros</dc:contributor>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41136"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dc:contributor>Ge, Mouzhi</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
<dcterms:title>Assessing the Quality of Spatio-Textual Datasets in the Absence of Ground Truth</dcterms:title>
<dcterms:issued>2017-09-09</dcterms:issued>
<dc:language>eng</dc:language>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T14:52:57Z</dcterms:available>
</rdf:Description>
</rdf:RDF>