Publikation: RB-Based PDE-Constrained Non-Smooth Optimization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate the Reduced Basis (RB) method for a semilinear, non-smooth, parameter dependent, elliptic PDE with a max-type response term, the so called max-PDE. Thereby, we first show the existence and uniqueness of so- lutions to the max-PDE with the help of monotone operator theory, as well as the Lipschitz continuity and compactness of the solution operator. Based on that we introduce a RB-greedy method, analyze its convergence behav- ior, introduce error estimates and an a posteriori error estimator. To solve the nonlinear equation on Finite Element (FE) and RB-level, a semismooth Newton method is used. The necessary theory on subdifferentials and semis- moothness is introduced and subsequently locally quadratic convergence of the semismooth Newton method for the max-PDE is shown. Additionally, the Discrete Empirical Interpolation method (DEIM) is used to approximate the nonlinearity in the RB-system. As application optimization problems con- strained by the parameter dependent max-PDE are analyzed. The theoretical results are verified through numerical examples for both the max-PDE itself and the optimization problems. It becomes apparent that RB can be a suitable approach to solve the max-PDE more efficient.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERNREUTHER, Marco, 2019. RB-Based PDE-Constrained Non-Smooth Optimization [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Bernreuther2019RBBas-47244,
year={2019},
title={RB-Based PDE-Constrained Non-Smooth Optimization},
address={Konstanz},
school={Universität Konstanz},
author={Bernreuther, Marco}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47244">
<dcterms:title>RB-Based PDE-Constrained Non-Smooth Optimization</dcterms:title>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:rights>terms-of-use</dc:rights>
<dcterms:abstract xml:lang="eng">We investigate the Reduced Basis (RB) method for a semilinear, non-smooth, parameter dependent, elliptic PDE with a max-type response term, the so called max-PDE. Thereby, we first show the existence and uniqueness of so- lutions to the max-PDE with the help of monotone operator theory, as well as the Lipschitz continuity and compactness of the solution operator. Based on that we introduce a RB-greedy method, analyze its convergence behav- ior, introduce error estimates and an a posteriori error estimator. To solve the nonlinear equation on Finite Element (FE) and RB-level, a semismooth Newton method is used. The necessary theory on subdifferentials and semis- moothness is introduced and subsequently locally quadratic convergence of the semismooth Newton method for the max-PDE is shown. Additionally, the Discrete Empirical Interpolation method (DEIM) is used to approximate the nonlinearity in the RB-system. As application optimization problems con- strained by the parameter dependent max-PDE are analyzed. The theoretical results are verified through numerical examples for both the max-PDE itself and the optimization problems. It becomes apparent that RB can be a suitable approach to solve the max-PDE more efficient.</dcterms:abstract>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47244"/>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dc:creator>Bernreuther, Marco</dc:creator>
<dc:language>eng</dc:language>
<dc:contributor>Bernreuther, Marco</dc:contributor>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-17T07:12:39Z</dc:date>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47244/3/Bernreuther_2-t4k1djyj77yn3.pdf"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-17T07:12:39Z</dcterms:available>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:issued>2019</dcterms:issued>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/47244/3/Bernreuther_2-t4k1djyj77yn3.pdf"/>
</rdf:Description>
</rdf:RDF>