Publikation:

Separating the wheat from the chaff : identifying relevant and similar performance data with visual analytics

Lade...
Vorschaubild

Dateien

vonRueden_0-309713.pdf
vonRueden_0-309713.pdfGröße: 229.01 KBDownloads: 576

Datum

2015

Autor:innen

von Rüden, Laura
Hermanns, Marc-André
Mohr, Bernd
Wolf, Felix

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BREMER, Peer-Timo, ed. and others. VPA '15 : Proceedings of the 2nd Workshop on Visual Performance Analysis. New York, NY: ACM Press, 2015, 4. ISBN 978-1-4503-4013-7. Available under: doi: 10.1145/2835238.2835242

Zusammenfassung

Performance-analysis tools are indispensable for understanding and optimizing the behavior of parallel programs running on increasingly powerful supercomputers. However, with size and complexity of hardware and software on the rise, performance data sets are becoming so voluminous that their analysis poses serious challenges. In particular, the search space that must be traversed and the number of individual performance views that must be explored to identify phenomena of interest becomes too large. To mitigate this problem, we use visual analytics. Specifically, we accelerate the analysis of performance profiles by automatically identifying (1) relevant and (2) similar data subsets and their performance views. We focus on views of the virtual-process topology, showing that their relevance can be well captured with visual-quality metrics and that they can be further assigned to topical groups according to their visual features. A case study demonstrates that our approach helps reduce the search space by up to 80%.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

VPA 2015, 15. Nov. 2015 - 20. Nov. 2015, Austin, Texas
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690VON RÜDEN, Laura, Marc-André HERMANNS, Michael BEHRISCH, Daniel A. KEIM, Bernd MOHR, Felix WOLF, 2015. Separating the wheat from the chaff : identifying relevant and similar performance data with visual analytics. VPA 2015. Austin, Texas, 15. Nov. 2015 - 20. Nov. 2015. In: BREMER, Peer-Timo, ed. and others. VPA '15 : Proceedings of the 2nd Workshop on Visual Performance Analysis. New York, NY: ACM Press, 2015, 4. ISBN 978-1-4503-4013-7. Available under: doi: 10.1145/2835238.2835242
BibTex
@inproceedings{vonRuden2015Separ-32305,
  year={2015},
  doi={10.1145/2835238.2835242},
  title={Separating the wheat from the chaff : identifying relevant and similar performance data with visual analytics},
  isbn={978-1-4503-4013-7},
  publisher={ACM Press},
  address={New York, NY},
  booktitle={VPA '15 : Proceedings of the 2nd Workshop on Visual Performance Analysis},
  editor={Bremer, Peer-Timo},
  author={von Rüden, Laura and Hermanns, Marc-André and Behrisch, Michael and Keim, Daniel A. and Mohr, Bernd and Wolf, Felix},
  note={Article Number: 4}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32305">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Hermanns, Marc-André</dc:creator>
    <dc:contributor>Wolf, Felix</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32305"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-02T13:32:11Z</dc:date>
    <dcterms:title>Separating the wheat from the chaff : identifying relevant and similar performance data with visual analytics</dcterms:title>
    <dc:contributor>Mohr, Bernd</dc:contributor>
    <dc:creator>Wolf, Felix</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32305/1/vonRueden_0-309713.pdf"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>von Rüden, Laura</dc:contributor>
    <dc:contributor>Hermanns, Marc-André</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32305/1/vonRueden_0-309713.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>von Rüden, Laura</dc:creator>
    <dc:creator>Mohr, Bernd</dc:creator>
    <dcterms:issued>2015</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Performance-analysis tools are indispensable for understanding and optimizing the behavior of parallel programs running on increasingly powerful supercomputers. However, with size and complexity of hardware and software on the rise, performance data sets are becoming so voluminous that their analysis poses serious challenges. In particular, the search space that must be traversed and the number of individual performance views that must be explored to identify phenomena of interest becomes too large. To mitigate this problem, we use visual analytics. Specifically, we accelerate the analysis of performance profiles by automatically identifying (1) relevant and (2) similar data subsets and their performance views. We focus on views of the virtual-process topology, showing that their relevance can be well captured with visual-quality metrics and that they can be further assigned to topical groups according to their visual features. A case study demonstrates that our approach helps reduce the search space by up to 80%.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Behrisch, Michael</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-02T13:32:11Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen