Publikation: Intelligent data analysis : an introduction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTHOLD, Michael R., ed., David J. HAND, ed., 2003. Intelligent data analysis : an introduction. 2., rev. and extended ed.. Springer. ISBN 978-3-540-43060-5BibTex
@book{Berthold2003Intel-16712, year={2003}, isbn={978-3-540-43060-5}, publisher={Springer}, title={Intelligent data analysis : an introduction}, edition={2., rev. and extended ed.}, editor={Berthold, Michael R. and Hand, David J.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16712"> <dcterms:issued>2003</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-11T10:17:24Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:issn>978-3-540-43060-5</bibo:issn> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-11-11T10:17:24Z</dcterms:available> <dcterms:title>Intelligent data analysis : an introduction</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:publisher>Springer</dc:publisher> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hand, David J.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16712"/> <dcterms:abstract xml:lang="eng">This monograph is a detailed introductory presentation of the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues, ranging from the basic concepts of probability, through general notions of inference, to advanced multivariate and time series methods, as well as a detailed discussion of the increasingly important Bayesian approaches and Support Vector Machines. The following chapters then concentrate on the area of machine learning and artificial intelligence and provide introductions into the topics of rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on Visualization and a higher-level overview of the IDA processes, which illustrates the breadth of application of the presented ideas.</dcterms:abstract> </rdf:Description> </rdf:RDF>