Publikation: Physiological limits to life in anoxic subseafloor sediment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In subseafloor sediment, microbial cell densities exponentially decrease with depth into the fermentation zone. Here, we address the classical question of 'why are cells dying faster than they are growing?' from the standpoint of physiology. The stoichiometries of fermentative ATP production and consumption in the fermentation zone place bounds on the conversion of old cell biomass into new. Most fermentable organic matter in deep subseafloor sediment is amino acids from dead cells because cells are mostly protein by weight. Conversion of carbon from fermented dead cell protein into methanogen protein via hydrogenotrophic and acetoclastic methanogenesis occurs at ratios of ∼200:1 and 100:1, respectively, while fermenters can reach conversion ratios approaching 6:1. Amino acid fermentations become thermodynamically more efficient at lower substrate and product concentrations, but the conversion of carbon from dead cell protein into fermenter protein is low because of the high energetic cost of translation. Low carbon conversion factors within subseafloor anaerobic feeding chains account for exponential declines in cellular biomass in the fermentation zone of anoxic sediments. Our analysis points to the existence of a life-death transition zone in which the last biologically catalyzed life processes are replaced with purely chemical reactions no longer coupled to life.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ORSI, William D., Bernhard SCHINK, Wolfgang BUCKEL, William F. MARTIN, 2020. Physiological limits to life in anoxic subseafloor sediment. In: FEMS microbiology reviews. Oxford University Press. 2020, 44(2), pp. 219-231. ISSN 0168-6445. eISSN 1574-6976. Available under: doi: 10.1093/femsre/fuaa004BibTex
@article{Orsi2020Physi-52308, year={2020}, doi={10.1093/femsre/fuaa004}, title={Physiological limits to life in anoxic subseafloor sediment}, number={2}, volume={44}, issn={0168-6445}, journal={FEMS microbiology reviews}, pages={219--231}, author={Orsi, William D. and Schink, Bernhard and Buckel, Wolfgang and Martin, William F.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52308"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:creator>Martin, William F.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>Physiological limits to life in anoxic subseafloor sediment</dcterms:title> <dc:contributor>Orsi, William D.</dc:contributor> <dc:creator>Buckel, Wolfgang</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-07T13:30:52Z</dcterms:available> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Orsi, William D.</dc:creator> <dc:contributor>Martin, William F.</dc:contributor> <dc:contributor>Buckel, Wolfgang</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-07T13:30:52Z</dc:date> <dc:contributor>Schink, Bernhard</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52308/1/Orsi_2-swfd9rh1xh6r4.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52308"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Schink, Bernhard</dc:creator> <dcterms:abstract xml:lang="eng">In subseafloor sediment, microbial cell densities exponentially decrease with depth into the fermentation zone. Here, we address the classical question of 'why are cells dying faster than they are growing?' from the standpoint of physiology. The stoichiometries of fermentative ATP production and consumption in the fermentation zone place bounds on the conversion of old cell biomass into new. Most fermentable organic matter in deep subseafloor sediment is amino acids from dead cells because cells are mostly protein by weight. Conversion of carbon from fermented dead cell protein into methanogen protein via hydrogenotrophic and acetoclastic methanogenesis occurs at ratios of ∼200:1 and 100:1, respectively, while fermenters can reach conversion ratios approaching 6:1. Amino acid fermentations become thermodynamically more efficient at lower substrate and product concentrations, but the conversion of carbon from dead cell protein into fermenter protein is low because of the high energetic cost of translation. Low carbon conversion factors within subseafloor anaerobic feeding chains account for exponential declines in cellular biomass in the fermentation zone of anoxic sediments. Our analysis points to the existence of a life-death transition zone in which the last biologically catalyzed life processes are replaced with purely chemical reactions no longer coupled to life.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52308/1/Orsi_2-swfd9rh1xh6r4.pdf"/> </rdf:Description> </rdf:RDF>