Publikation:

Physiological limits to life in anoxic subseafloor sediment

Lade...
Vorschaubild

Dateien

Orsi_2-swfd9rh1xh6r4.pdf
Orsi_2-swfd9rh1xh6r4.pdfGröße: 2.99 MBDownloads: 156

Datum

2020

Autor:innen

Orsi, William D.
Buckel, Wolfgang
Martin, William F.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

FEMS microbiology reviews. Oxford University Press. 2020, 44(2), pp. 219-231. ISSN 0168-6445. eISSN 1574-6976. Available under: doi: 10.1093/femsre/fuaa004

Zusammenfassung

In subseafloor sediment, microbial cell densities exponentially decrease with depth into the fermentation zone. Here, we address the classical question of 'why are cells dying faster than they are growing?' from the standpoint of physiology. The stoichiometries of fermentative ATP production and consumption in the fermentation zone place bounds on the conversion of old cell biomass into new. Most fermentable organic matter in deep subseafloor sediment is amino acids from dead cells because cells are mostly protein by weight. Conversion of carbon from fermented dead cell protein into methanogen protein via hydrogenotrophic and acetoclastic methanogenesis occurs at ratios of ∼200:1 and 100:1, respectively, while fermenters can reach conversion ratios approaching 6:1. Amino acid fermentations become thermodynamically more efficient at lower substrate and product concentrations, but the conversion of carbon from dead cell protein into fermenter protein is low because of the high energetic cost of translation. Low carbon conversion factors within subseafloor anaerobic feeding chains account for exponential declines in cellular biomass in the fermentation zone of anoxic sediments. Our analysis points to the existence of a life-death transition zone in which the last biologically catalyzed life processes are replaced with purely chemical reactions no longer coupled to life.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

deep biosphere, fermentation, syntrophy, methanogenesis, limits to life, anaerobic physiology

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ORSI, William D., Bernhard SCHINK, Wolfgang BUCKEL, William F. MARTIN, 2020. Physiological limits to life in anoxic subseafloor sediment. In: FEMS microbiology reviews. Oxford University Press. 2020, 44(2), pp. 219-231. ISSN 0168-6445. eISSN 1574-6976. Available under: doi: 10.1093/femsre/fuaa004
BibTex
@article{Orsi2020Physi-52308,
  year={2020},
  doi={10.1093/femsre/fuaa004},
  title={Physiological limits to life in anoxic subseafloor sediment},
  number={2},
  volume={44},
  issn={0168-6445},
  journal={FEMS microbiology reviews},
  pages={219--231},
  author={Orsi, William D. and Schink, Bernhard and Buckel, Wolfgang and Martin, William F.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52308">
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:creator>Martin, William F.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Physiological limits to life in anoxic subseafloor sediment</dcterms:title>
    <dc:contributor>Orsi, William D.</dc:contributor>
    <dc:creator>Buckel, Wolfgang</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-07T13:30:52Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Orsi, William D.</dc:creator>
    <dc:contributor>Martin, William F.</dc:contributor>
    <dc:contributor>Buckel, Wolfgang</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-07T13:30:52Z</dc:date>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52308/1/Orsi_2-swfd9rh1xh6r4.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52308"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:creator>Schink, Bernhard</dc:creator>
    <dcterms:abstract xml:lang="eng">In subseafloor sediment, microbial cell densities exponentially decrease with depth into the fermentation zone. Here, we address the classical question of 'why are cells dying faster than they are growing?' from the standpoint of physiology. The stoichiometries of fermentative ATP production and consumption in the fermentation zone place bounds on the conversion of old cell biomass into new. Most fermentable organic matter in deep subseafloor sediment is amino acids from dead cells because cells are mostly protein by weight. Conversion of carbon from fermented dead cell protein into methanogen protein via hydrogenotrophic and acetoclastic methanogenesis occurs at ratios of ∼200:1 and 100:1, respectively, while fermenters can reach conversion ratios approaching 6:1. Amino acid fermentations become thermodynamically more efficient at lower substrate and product concentrations, but the conversion of carbon from dead cell protein into fermenter protein is low because of the high energetic cost of translation. Low carbon conversion factors within subseafloor anaerobic feeding chains account for exponential declines in cellular biomass in the fermentation zone of anoxic sediments. Our analysis points to the existence of a life-death transition zone in which the last biologically catalyzed life processes are replaced with purely chemical reactions no longer coupled to life.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52308/1/Orsi_2-swfd9rh1xh6r4.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen