Publikation:

A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Andrienko, Gennady
Andrienko, Natalia
Bremm, Sebastian
von Landesberger, Tatiana
Pölitz, Christian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Location Based Services. 2010, 4(3-4), pp. 200-221. ISSN 1748-9725. eISSN 1748-9733. Available under: doi: 10.1080/17489725.2010.532816

Zusammenfassung

We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

geovisualisation, spatio-temporal data, visual cluster analysis

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ANDRIENKO, Gennady, Natalia ANDRIENKO, Peter BAK, Sebastian BREMM, Daniel A. KEIM, Tatiana VON LANDESBERGER, Christian PÖLITZ, Tobias SCHRECK, 2010. A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. In: Journal of Location Based Services. 2010, 4(3-4), pp. 200-221. ISSN 1748-9725. eISSN 1748-9733. Available under: doi: 10.1080/17489725.2010.532816
BibTex
@article{Andrienko2010-09frame-40588,
  year={2010},
  doi={10.1080/17489725.2010.532816},
  title={A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage},
  number={3-4},
  volume={4},
  issn={1748-9725},
  journal={Journal of Location Based Services},
  pages={200--221},
  author={Andrienko, Gennady and Andrienko, Natalia and Bak, Peter and Bremm, Sebastian and Keim, Daniel A. and von Landesberger, Tatiana and Pölitz, Christian and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40588">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bak, Peter</dc:creator>
    <dc:contributor>von Landesberger, Tatiana</dc:contributor>
    <dc:creator>Andrienko, Gennady</dc:creator>
    <dc:contributor>Andrienko, Natalia</dc:contributor>
    <dcterms:title>A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage</dcterms:title>
    <dc:creator>von Landesberger, Tatiana</dc:creator>
    <dcterms:issued>2010-09</dcterms:issued>
    <dc:contributor>Pölitz, Christian</dc:contributor>
    <dc:creator>Andrienko, Natalia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-13T09:20:53Z</dcterms:available>
    <dc:contributor>Bak, Peter</dc:contributor>
    <dc:creator>Bremm, Sebastian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Pölitz, Christian</dc:creator>
    <dcterms:abstract xml:lang="eng">We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.</dcterms:abstract>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Andrienko, Gennady</dc:contributor>
    <dc:contributor>Bremm, Sebastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-13T09:20:53Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40588"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen