A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Andrienko, Gennady
Andrienko, Natalia
Bremm, Sebastian
von Landesberger, Tatiana
Pölitz, Christian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Location Based Services. 2010, 4(3-4), pp. 200-221. ISSN 1748-9725. eISSN 1748-9733. Available under: doi: 10.1080/17489725.2010.532816
Zusammenfassung

We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
geovisualisation, spatio-temporal data, visual cluster analysis
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690ANDRIENKO, Gennady, Natalia ANDRIENKO, Peter BAK, Sebastian BREMM, Daniel A. KEIM, Tatiana VON LANDESBERGER, Christian PÖLITZ, Tobias SCHRECK, 2010. A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. In: Journal of Location Based Services. 2010, 4(3-4), pp. 200-221. ISSN 1748-9725. eISSN 1748-9733. Available under: doi: 10.1080/17489725.2010.532816
BibTex
@article{Andrienko2010-09frame-40588,
  year={2010},
  doi={10.1080/17489725.2010.532816},
  title={A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage},
  number={3-4},
  volume={4},
  issn={1748-9725},
  journal={Journal of Location Based Services},
  pages={200--221},
  author={Andrienko, Gennady and Andrienko, Natalia and Bak, Peter and Bremm, Sebastian and Keim, Daniel A. and von Landesberger, Tatiana and Pölitz, Christian and Schreck, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40588">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bak, Peter</dc:creator>
    <dc:contributor>von Landesberger, Tatiana</dc:contributor>
    <dc:creator>Andrienko, Gennady</dc:creator>
    <dc:contributor>Andrienko, Natalia</dc:contributor>
    <dcterms:title>A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage</dcterms:title>
    <dc:creator>von Landesberger, Tatiana</dc:creator>
    <dcterms:issued>2010-09</dcterms:issued>
    <dc:contributor>Pölitz, Christian</dc:contributor>
    <dc:creator>Andrienko, Natalia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-13T09:20:53Z</dcterms:available>
    <dc:contributor>Bak, Peter</dc:contributor>
    <dc:creator>Bremm, Sebastian</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Pölitz, Christian</dc:creator>
    <dcterms:abstract xml:lang="eng">We suggest a visual analytics framework for the exploration and analysis of spatially and temporally referenced values of numeric attributes. The framework supports two complementary perspectives on spatio-temporal data: as a temporal sequence of spatial distributions of attribute values (called spatial situations) and as a set of spatially referenced time series of attribute values representing local temporal variations. To handle a large amount of data, we use the self-organising map (SOM) method, which groups objects and arranges them according to similarity of relevant data features. We apply the SOM approach to spatial situations and to local temporal variations and obtain two types of SOM outcomes, called space-in-time SOM and time-in-space SOM, respectively. The examination and interpretation of both types of SOM outcomes are supported by appropriate visualisation and interaction techniques. This article describes the use of the framework by an example scenario of data analysis. We also discuss how the framework can be extended from supporting explorative analysis to building predictive models of the spatio-temporal variation of attribute values. We apply our approach to phone call data showing its usefulness in real-world analytic scenarios.</dcterms:abstract>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Andrienko, Gennady</dc:contributor>
    <dc:contributor>Bremm, Sebastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-11-13T09:20:53Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40588"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen