Publikation:

Pure states, positive matrix polynomials and sums of hermitian squares

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Indiana University Mathematics Journal. 2010, 59(3), pp. 857-874

Zusammenfassung

Let M be an archimedean quadratic module of real t-by-t matrix polynomials in n variables, and let S be the set of all n-tuples where each element of M is positive semidefinite. Our key finding is a natural bijection between the set of pure states of M and the cartesian product of S with the real projective (t-1)-space. This leads us to conceptual proofs of positivity certificates for matrix polynomials, including the recent seminal result of Hol and Scherer: If a symmetric matrix polynomial is positive definite on S, then it belongs to M. We also discuss what happens for non-symmetric matrix polynomials or in the absence of the archimedean assumption, and review some of the related classical results. The methods employed are both algebraic and functional analytic.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

matrix polynomial, pure state, positive semide nite matrix, sum of hermitian squares, Positivstellensatz, archimedean quadratic module, Choquet theory.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KLEP, Igor, Markus SCHWEIGHOFER, 2010. Pure states, positive matrix polynomials and sums of hermitian squares. In: Indiana University Mathematics Journal. 2010, 59(3), pp. 857-874
BibTex
@article{Klep2010state-15617,
  year={2010},
  title={Pure states, positive matrix polynomials and sums of hermitian squares},
  number={3},
  volume={59},
  journal={Indiana University Mathematics Journal},
  pages={857--874},
  author={Klep, Igor and Schweighofer, Markus},
  note={Link zur Originalveröffentlichung: http://www.iumj.indiana.edu/IUMJ/FULLTEXT/2010/59/4107}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15617">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T07:48:38Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Pure states, positive matrix polynomials and sums of hermitian squares</dcterms:title>
    <dc:contributor>Klep, Igor</dc:contributor>
    <dc:creator>Klep, Igor</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15617"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010</dcterms:issued>
    <dc:contributor>Schweighofer, Markus</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Let M be an archimedean quadratic module of real t-by-t matrix polynomials in n variables, and let S be the set of all n-tuples where each element of M is positive semidefinite. Our key finding is a natural bijection between the set of pure states of M and the cartesian product of S with the real projective (t-1)-space. This leads us to conceptual proofs of positivity certificates for matrix polynomials, including the recent seminal result of Hol and Scherer: If a symmetric matrix polynomial is positive definite on S, then it belongs to M. We also discuss what happens for non-symmetric matrix polynomials or in the absence of the archimedean assumption, and review some of the related classical results. The methods employed are both algebraic and functional analytic.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T07:48:38Z</dcterms:available>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:bibliographicCitation>Indiana University Mathematics Journal ; 59 (2010), 3. - S. 857-874</dcterms:bibliographicCitation>
    <dc:creator>Schweighofer, Markus</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Link zur Originalveröffentlichung: http://www.iumj.indiana.edu/IUMJ/FULLTEXT/2010/59/4107
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen