Publikation: Pure states, positive matrix polynomials and sums of hermitian squares
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let M be an archimedean quadratic module of real t-by-t matrix polynomials in n variables, and let S be the set of all n-tuples where each element of M is positive semidefinite. Our key finding is a natural bijection between the set of pure states of M and the cartesian product of S with the real projective (t-1)-space. This leads us to conceptual proofs of positivity certificates for matrix polynomials, including the recent seminal result of Hol and Scherer: If a symmetric matrix polynomial is positive definite on S, then it belongs to M. We also discuss what happens for non-symmetric matrix polynomials or in the absence of the archimedean assumption, and review some of the related classical results. The methods employed are both algebraic and functional analytic.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KLEP, Igor, Markus SCHWEIGHOFER, 2010. Pure states, positive matrix polynomials and sums of hermitian squares. In: Indiana University Mathematics Journal. 2010, 59(3), pp. 857-874BibTex
@article{Klep2010state-15617, year={2010}, title={Pure states, positive matrix polynomials and sums of hermitian squares}, number={3}, volume={59}, journal={Indiana University Mathematics Journal}, pages={857--874}, author={Klep, Igor and Schweighofer, Markus}, note={Link zur Originalveröffentlichung: http://www.iumj.indiana.edu/IUMJ/FULLTEXT/2010/59/4107} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15617"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T07:48:38Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Pure states, positive matrix polynomials and sums of hermitian squares</dcterms:title> <dc:contributor>Klep, Igor</dc:contributor> <dc:creator>Klep, Igor</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15617"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2010</dcterms:issued> <dc:contributor>Schweighofer, Markus</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let M be an archimedean quadratic module of real t-by-t matrix polynomials in n variables, and let S be the set of all n-tuples where each element of M is positive semidefinite. Our key finding is a natural bijection between the set of pure states of M and the cartesian product of S with the real projective (t-1)-space. This leads us to conceptual proofs of positivity certificates for matrix polynomials, including the recent seminal result of Hol and Scherer: If a symmetric matrix polynomial is positive definite on S, then it belongs to M. We also discuss what happens for non-symmetric matrix polynomials or in the absence of the archimedean assumption, and review some of the related classical results. The methods employed are both algebraic and functional analytic.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-31T07:48:38Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:bibliographicCitation>Indiana University Mathematics Journal ; 59 (2010), 3. - S. 857-874</dcterms:bibliographicCitation> <dc:creator>Schweighofer, Markus</dc:creator> </rdf:Description> </rdf:RDF>