Publikation:

Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features

Lade...
Vorschaubild

Dateien

Hosu_2-smm3b734ymld7.pdf
Hosu_2-smm3b734ymld7.pdfGröße: 1.92 MBDownloads: 13

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) : proceedings : 16-20 June 2019, Long Beach, California. Los Alamitos, CA: IEEE Computer Society, 2019, S. 9367-9375. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-72813-293-8. Verfügbar unter: doi: 10.1109/CVPR.2019.00960

Zusammenfassung

We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 16. Juni 2019 - 20. Juni 2019, Long Beach, California
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HOSU, Vlad, Bastian GOLDLÜCKE, Dietmar SAUPE, 2019. Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, California, 16. Juni 2019 - 20. Juni 2019. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) : proceedings : 16-20 June 2019, Long Beach, California. Los Alamitos, CA: IEEE Computer Society, 2019, S. 9367-9375. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-72813-293-8. Verfügbar unter: doi: 10.1109/CVPR.2019.00960
BibTex
@inproceedings{Hosu2019-06Effec-50898,
  year={2019},
  doi={10.1109/CVPR.2019.00960},
  title={Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features},
  isbn={978-1-72813-293-8},
  issn={1063-6919},
  publisher={IEEE Computer Society},
  address={Los Alamitos, CA},
  booktitle={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) : proceedings : 16-20 June 2019, Long Beach, California},
  pages={9367--9375},
  author={Hosu, Vlad and Goldlücke, Bastian and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50898">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T13:24:17Z</dc:date>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:abstract xml:lang="eng">We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.</dcterms:abstract>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50898/1/Hosu_2-smm3b734ymld7.pdf"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T13:24:17Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50898"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50898/1/Hosu_2-smm3b734ymld7.pdf"/>
    <dcterms:issued>2019-06</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features</dcterms:title>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen