Publikation: Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HOSU, Vlad, Bastian GOLDLÜCKE, Dietmar SAUPE, 2019. Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, California, 16. Juni 2019 - 20. Juni 2019. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) : proceedings : 16-20 June 2019, Long Beach, California. Los Alamitos, CA: IEEE Computer Society, 2019, S. 9367-9375. ISSN 1063-6919. eISSN 2575-7075. ISBN 978-1-72813-293-8. Verfügbar unter: doi: 10.1109/CVPR.2019.00960BibTex
@inproceedings{Hosu2019-06Effec-50898, year={2019}, doi={10.1109/CVPR.2019.00960}, title={Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features}, isbn={978-1-72813-293-8}, issn={1063-6919}, publisher={IEEE Computer Society}, address={Los Alamitos, CA}, booktitle={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019) : proceedings : 16-20 June 2019, Long Beach, California}, pages={9367--9375}, author={Hosu, Vlad and Goldlücke, Bastian and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50898"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T13:24:17Z</dc:date> <dc:contributor>Hosu, Vlad</dc:contributor> <dcterms:abstract xml:lang="eng">We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.</dcterms:abstract> <dc:creator>Hosu, Vlad</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50898/1/Hosu_2-smm3b734ymld7.pdf"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:creator>Saupe, Dietmar</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-18T13:24:17Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50898"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50898/1/Hosu_2-smm3b734ymld7.pdf"/> <dcterms:issued>2019-06</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Effective Aesthetics Prediction With Multi-Level Spatially Pooled Features</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>