Publikation:

Superpixel-based structure classification for laparoscopic surgery

Lade...
Vorschaubild

Dateien

Bodenstedt_0-390044.pdf
Bodenstedt_0-390044.pdfGröße: 858.72 KBDownloads: 531

Datum

2016

Autor:innen

Bodenstedt, Sebastian
Wagner, Martin
Kenngott, Hannes
Müller-Stich, Beat Peter
Dillmann, Rüdiger
Speidel, Stefanie

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

WEBSTER, Robert J., ed., Ziv R. YANIV, ed.. Medical Imaging 2016 : Image-Guided Procedures, Robotic Interventions, and Modeling. Bellingham: SPIE, 2016, pp. ´. Progress in Biomedical Optics and Imaging. 17. ISSN 1605-7422. eISSN 2410-9045. ISBN 978-1-5106-0021-8. Available under: doi: 10.1117/12.2216750

Zusammenfassung

Minimally-invasive interventions offers multiple benefits for patients, but also entails drawbacks for the surgeon. The goal of context-aware assistance systems is to alleviate some of these difficulties. Localizing and identifying anatomical structures, maligned tissue and surgical instruments through endoscopic image analysis is paramount for an assistance system, making online measurements and augmented reality visualizations possible. Furthermore, such information can be used to assess the progress of an intervention, hereby allowing for a context-aware assistance. In this work, we present an approach for such an analysis. First, a given laparoscopic image is divided into groups of connected pixels, so-called superpixels, using the SEEDS algorithm. The content of a given superpixel is then described using information regarding its color and texture. Using a Random Forest classifier, we determine the class label of each superpixel. We evaluated our approach on a publicly available dataset for laparoscopic instrument detection and achieved a DICE score of 0.69.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Superpixel classification, Instrument detection, Tissue classification, Laparoscopic surgery, Endoscopic image analysis, Endoscopic image segmentation

Konferenz

Medical Imaging 2016, 28. Feb. 2016 - 1. März 2016, San Diego
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BODENSTEDT, Sebastian, Jochen GÖRTLER, Martin WAGNER, Hannes KENNGOTT, Beat Peter MÜLLER-STICH, Rüdiger DILLMANN, Stefanie SPEIDEL, 2016. Superpixel-based structure classification for laparoscopic surgery. Medical Imaging 2016. San Diego, 28. Feb. 2016 - 1. März 2016. In: WEBSTER, Robert J., ed., Ziv R. YANIV, ed.. Medical Imaging 2016 : Image-Guided Procedures, Robotic Interventions, and Modeling. Bellingham: SPIE, 2016, pp. ´. Progress in Biomedical Optics and Imaging. 17. ISSN 1605-7422. eISSN 2410-9045. ISBN 978-1-5106-0021-8. Available under: doi: 10.1117/12.2216750
BibTex
@inproceedings{Bodenstedt2016Super-36996,
  year={2016},
  doi={10.1117/12.2216750},
  title={Superpixel-based structure classification for laparoscopic surgery},
  number={17},
  isbn={978-1-5106-0021-8},
  issn={1605-7422},
  publisher={SPIE},
  address={Bellingham},
  series={Progress in Biomedical Optics and Imaging},
  booktitle={Medical Imaging 2016 : Image-Guided Procedures, Robotic Interventions, and Modeling},
  editor={Webster, Robert J. and Yaniv, Ziv R.},
  author={Bodenstedt, Sebastian and Görtler, Jochen and Wagner, Martin and Kenngott, Hannes and Müller-Stich, Beat Peter and Dillmann, Rüdiger and Speidel, Stefanie},
  note={Article Number: 978618}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36996">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Müller-Stich, Beat Peter</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Bodenstedt, Sebastian</dc:creator>
    <dcterms:abstract xml:lang="eng">Minimally-invasive interventions offers multiple benefits for patients, but also entails drawbacks for the surgeon. The goal of context-aware assistance systems is to alleviate some of these difficulties. Localizing and identifying anatomical structures, maligned tissue and surgical instruments through endoscopic image analysis is paramount for an assistance system, making online measurements and augmented reality visualizations possible. Furthermore, such information can be used to assess the progress of an intervention, hereby allowing for a context-aware assistance. In this work, we present an approach for such an analysis. First, a given laparoscopic image is divided into groups of connected pixels, so-called superpixels, using the SEEDS algorithm. The content of a given superpixel is then described using information regarding its color and texture. Using a Random Forest classifier, we determine the class label of each superpixel. We evaluated our approach on a publicly available dataset for laparoscopic instrument detection and achieved a DICE score of 0.69.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36996/3/Bodenstedt_0-390044.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-31T11:40:19Z</dcterms:available>
    <dc:contributor>Dillmann, Rüdiger</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <dc:creator>Dillmann, Rüdiger</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-31T11:40:19Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36996"/>
    <dc:contributor>Kenngott, Hannes</dc:contributor>
    <dc:contributor>Bodenstedt, Sebastian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36996/3/Bodenstedt_0-390044.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Speidel, Stefanie</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Wagner, Martin</dc:creator>
    <dcterms:title>Superpixel-based structure classification for laparoscopic surgery</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Kenngott, Hannes</dc:creator>
    <dc:contributor>Speidel, Stefanie</dc:contributor>
    <dc:contributor>Wagner, Martin</dc:contributor>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dc:contributor>Müller-Stich, Beat Peter</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen