Publikation: Hyperbolic Navier-Stokes equations I : Local well-posedness
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RACKE, Reinhard, Jürgen SAAL, 2012. Hyperbolic Navier-Stokes equations I : Local well-posedness. In: Evolution Equations & Control Theory. American Institute of Mathematical Sciences (AIMS). 2012, 1(1), pp. 195-215. eISSN 2163-2480. Available under: doi: 10.3934/eect.2012.1.195BibTex
@article{Racke2012-06Hyper-48767, year={2012}, doi={10.3934/eect.2012.1.195}, title={Hyperbolic Navier-Stokes equations I : Local well-posedness}, number={1}, volume={1}, journal={Evolution Equations & Control Theory}, pages={195--215}, author={Racke, Reinhard and Saal, Jürgen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48767"> <dcterms:title>Hyperbolic Navier-Stokes equations I : Local well-posedness</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Racke, Reinhard</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48767"/> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-25T10:10:12Z</dcterms:available> <dcterms:issued>2012-06</dcterms:issued> <dc:creator>Saal, Jürgen</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Saal, Jürgen</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-25T10:10:12Z</dc:date> </rdf:Description> </rdf:RDF>